1988 AHSME Problems/Problem 5

Problem

If $b$ and $c$ are constants and $(x + 2)(x + b) = x^2 + cx + 6$, then $c$ is

$\textbf{(A)}\ -5\qquad \textbf{(B)}\ -3\qquad \textbf{(C)}\ -1\qquad \textbf{(D)}\ 3\qquad \textbf{(E)}\ 5$


Solution

We first start out by expanding the left side of the equation, $(x+2)(x+b)=x^{2}+bx+2x+2b=x^2+(2+b)x+2b=x^2+cx+6$. We know the constant terms have to be equal so we have $2b=6$, so $b=3$. Plugging $b=3$ back in yields $x^2+(2+3)x+6=x^2+cx+6$. Thus, $c=5 \implies \boxed{\text{E}}$.

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png