# 1989 AJHSME Problems/Problem 15

## Problem

The area of the shaded region $\text{BEDC}$ in parallelogram $\text{ABCD}$ is $[asy] unitsize(10); pair A,B,C,D,E; A=origin; B=(4,8); C=(14,8); D=(10,0); E=(4,0); draw(A--B--C--D--cycle); fill(B--E--D--C--cycle,gray); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,S); label("10",(9,8),N); label("6",(7,0),S); label("8",(4,4),W); draw((3,0)--(3,1)--(4,1)); [/asy]$ $\text{(A)}\ 24 \qquad \text{(B)}\ 48 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 64 \qquad \text{(E)}\ 80$

## Solution 1

Let $[ABC]$ denote the area of figure $ABC$.

Clearly, $[BEDC]=[ABCD]-[ABE]$. Using basic area formulas, $[ABCD]=(BC)(BE)=80$ $[ABE]=(BE)(AE)/2 = 4(AE)$

Since $AE+ED=BC=10$ and $ED=6$, $AE=4$ and the area of $\triangle ABE$ is $4(4)=16$.

Finally, we have $[BEDC]=80-16=64\rightarrow \boxed{\text{D}}$

## Solution 2

Notice that $BEDC$ is a trapezoid. Therefore its area is $$8\left(\frac{6+10}{2}\right)=8\left(\frac{16}{2}\right)=8(8)=64\Rightarrow \mathrm{(D)}$$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 