1992 AHSME Problems/Problem 15

Problem

Let $i=\sqrt{-1}$. Define a sequence of complex numbers by

\[z_1=0,\quad z_{n+1}=z_{n}^2+i \text{ for } n\ge1.\] In the complex plane, how far from the origin is $z_{111}$?

$\text{(A) } 1\quad \text{(B) } \sqrt{2}\quad \text{(C) } \sqrt{3}\quad \text{(D) } \sqrt{110}\quad \text{(E) } \sqrt{2^{55}}$

Solution

$\fbox{B}$ Write out some terms: $0, i, -1+i, -i, -1+i, -i, -1+i, -i$, etc., and it keeps alternating between $-1+i$ and $-i$, so as $111$ is odd, $z_{111}$ is $-1+i$. Thus its distance from the origin is $\sqrt{(-1)^2+1^2} = \sqrt{2}$.

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png