1992 AHSME Problems/Problem 16

Problem

If \[\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\] for three positive numbers $x,y$ and $z$, all different, then $\frac{x}{y}=$

$\text{(A) } \frac{1}{2}\quad \text{(B) } \frac{3}{5}\quad \text{(C) } \frac{2}{3}\quad \text{(D) } \frac{5}{3}\quad \text{(E) } 2$

Solution 1

$\fbox{E}$ We have $\frac{x+y}{z} = \frac{x}{y} \implies xy+y^2=xz$ and $\frac{y}{x-z} = \frac{x}{y} \implies y^2=x^2-xz \implies x^2-y^2=xz$. Equating the two expressions for $xz$ gives $xy+y^2=x^2-y^2 \implies x^2-xy-2y^2=0 \implies (x+y)(x-2y)=0$, so as $x+y$ cannot be $0$ for positive $x$ and $y$, we must have $x-2y=0 \implies x=2y \implies \frac{x}{y}=2$.

Solution 2

We cross multiply the first and third fractions and the second and third fractions, respectively, for \[x(x-z)=y^2\] \[y(x+y)=xz\] Notice how the first equation can be expanded and rearranged to contain an $(x+y)$ term. \[x^2-xz=y^2\] \[x^2-y^2=xz\] \[(x+y)(x-y)=xz\] We can divide this by the second equation to get \[\frac{(x+y)(x-y)}{y(x+y)}=\frac{xz}{xz}\] \[\frac{x-y}{y}=1\] \[\frac{x}{y}-1=1\] \[\frac{x}{y}=2 \rightarrow \boxed{E}\]

Solution 3

Since \[\frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} = \frac{a_1 + a_2+ ... + a_n}{b_1 + b_2 + ... + b_n},\] we can say that \[\frac{y}{x-z} = \frac{x+y}{z} = \frac{x}{y} = \frac {y+(x+y)+x}{(x-z)+z+y} = \boxed{2}.\] $\implies \boxed{(E)}$.

$\textbf{Proof of the used property:}$

Let \[\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = ... = \frac{a_n}{b_n} = r.\]

Therefore, \begin{align*} a_1 &= b_1r,\\ a_2 &= b_2r,\\ ...,\\ a_n &= b_nr \end{align*} so \[\frac{a_1 + a_2+ ... + a_n}{b_1 + b_2 + ... + b_n} = \frac{b_1r + b_2r + ... + b_nr}{b_1 + b_2 + ... + b_n}\] \[= \frac{(b_1 + b_2 + ... + b_n)(nr)}{(b_1 + b_2 + ... + b_n)(n)} = r\] --- NamelyOrange

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png