# 1992 AHSME Problems/Problem 25

## Problem

In $\triangle{ABC}$, $\angle ABC=120^\circ,AB=3$ and $BC=4$. If perpendiculars constructed to $\overline{AB}$ at $A$ and to $\overline{BC}$ at $C$ meet at $D$, then $CD=$ $\text{(A) } 3\quad \text{(B) } \frac{8}{\sqrt{3}}\quad \text{(C) } 5\quad \text{(D) } \frac{11}{2}\quad \text{(E) } \frac{10}{\sqrt{3}}$

## Solution

We begin by drawing a diagram. $[asy] import olympiad; import cse5; import geometry; size(150); defaultpen(fontsize(10pt)); defaultpen(0.8); dotfactor = 4; pair A = origin; pair C = A+dir(55); pair D = A+dir(0); pair B = extension(A,A+dir(90),C,C+dir(-155)); label("A",A,S); label("C",C,NE); label("D",D,SE); label("B",B,NW); label("4",B--C,NW); label("3",A--B,W); draw(A--C--D--cycle); draw(A--B--C); draw(rightanglemark(B,C,D,2)); draw(rightanglemark(B,A,D,2)); [/asy]$ We extend $CB$ and $DA$ to meet at $E.$ This gives us a couple right triangles in $CED$ and $BEA.$ $[asy] import olympiad; import cse5; import geometry; size(250); defaultpen(fontsize(10pt)); defaultpen(0.8); dotfactor = 4; pair A = origin; pair C = A+dir(55); pair D = A+dir(0); pair B = extension(A,A+dir(90),C,C+dir(-155)); pair E = extension(A,A+2*dir(180),B,B+2*dir(-155)); label("A",A,S); label("C",C,NE); label("D",D,SE); label("B",B,NW); label("4",B--C,NW); label("3",A--B,W); label("E",E,SW); draw(A--C--D--cycle); draw(A--B--C); draw(rightanglemark(B,C,D,2)); draw(rightanglemark(B,A,D,2)); draw(A--E--B,dashed); [/asy]$ We see that $\angle E = 30^\circ$. Hence, $\triangle BEA$ and $\triangle DEC$ are 30-60-90 triangles.

Using the side ratios of 30-60-90 triangles, we have $BE=2BA=6$. This tells us that $CE=BC+BE=4+6=10$. Also, $EA=3\sqrt{3}$.

Because $\triangle DEC\sim\triangle BEA$, we have $$\frac{10}{3\sqrt{3}}=\frac{CD}{3}.$$ Solving the equation, we have \begin{align*} \frac{CD}3&=\frac{10}{3\sqrt{3}}\\ CD&=3\cdot\frac{10}{3\sqrt{3}}\\ CD&=\frac{10}{\sqrt{3}}\ \end{align*} Hence, $CD=\boxed{\textbf{E}}$.

## See also

 1992 AHSME (Problems • Answer Key • Resources) Preceded byProblem 24 Followed byProblem 26 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS