# 1999 AMC 8 Problems/Problem 20

## Problem

Figure 1 is called a "stack map." The numbers tell how many cubes are stacked in each position. Fig. 2 shows these cubes, and Fig. 3 shows the view of the stacked cubes as seen from the front.

Which of the following is the front view for the stack map in Fig. 4? $[asy] unitsize(24); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((1,0)--(1,2)); draw((0,1)--(2,1)); draw((5,0)--(7,0)--(7,1)--(20/3,4/3)--(20/3,13/3)--(19/3,14/3)--(16/3,14/3)--(16/3,11/3)--(13/3,11/3)--(13/3,2/3)--cycle); draw((20/3,13/3)--(17/3,13/3)--(17/3,10/3)--(14/3,10/3)--(14/3,1/3)); draw((20/3,10/3)--(17/3,10/3)--(17/3,7/3)--(20/3,7/3)); draw((17/3,7/3)--(14/3,7/3)); draw((7,1)--(6,1)--(6,2)--(5,2)--(5,0)); draw((5,1)--(6,1)--(6,0)); draw((20/3,4/3)--(6,4/3)); draw((17/3,13/3)--(16/3,14/3)); draw((17/3,10/3)--(16/3,11/3)); draw((14/3,10/3)--(13/3,11/3)); draw((5,2)--(13/3,8/3)); draw((5,1)--(13/3,5/3)); draw((6,2)--(17/3,7/3)); draw((9,0)--(11,0)--(11,4)--(10,4)--(10,3)--(9,3)--cycle); draw((11,3)--(10,3)--(10,0)); draw((11,2)--(9,2)); draw((11,1)--(9,1)); draw((13,0)--(16,0)--(16,2)--(13,2)--cycle); draw((13,1)--(16,1)); draw((14,0)--(14,2)); draw((15,0)--(15,2)); label("Figure 1",(1,0),S); label("Figure 2",(17/3,0),S); label("Figure 3",(10,0),S); label("Figure 4",(14.5,0),S); label("1",(1.5,.2),N); label("2",(.5,.2),N); label("3",(.5,1.2),N); label("4",(1.5,1.2),N); label("1",(13.5,.2),N); label("3",(14.5,.2),N); label("1",(15.5,.2),N); label("2",(13.5,1.2),N); label("2",(14.5,1.2),N); label("4",(15.5,1.2),N); [/asy]$ $[asy] unitsize(18); draw((0,0)--(3,0)--(3,2)--(1,2)--(1,4)--(0,4)--cycle); draw((0,3)--(1,3)); draw((0,2)--(1,2)--(1,0)); draw((0,1)--(3,1)); draw((2,0)--(2,2)); draw((5,0)--(8,0)--(8,4)--(7,4)--(7,3)--(6,3)--(6,2)--(5,2)--cycle); draw((8,3)--(7,3)--(7,0)); draw((8,2)--(6,2)--(6,0)); draw((8,1)--(5,1)); draw((10,0)--(12,0)--(12,4)--(11,4)--(11,3)--(10,3)--cycle); draw((12,3)--(11,3)--(11,0)); draw((12,2)--(10,2)); draw((12,1)--(10,1)); draw((14,0)--(17,0)--(17,4)--(16,4)--(16,2)--(14,2)--cycle); draw((17,3)--(16,3)); draw((17,2)--(16,2)--(16,0)); draw((17,1)--(14,1)); draw((15,0)--(15,2)); draw((19,0)--(22,0)--(22,4)--(20,4)--(20,1)--(19,1)--cycle); draw((22,3)--(20,3)); draw((22,2)--(20,2)); draw((22,1)--(20,1)--(20,0)); draw((21,0)--(21,4)); label("(A)",(1.5,0),S); label("(B)",(6.5,0),S); label("(C)",(11,0),S); label("(D)",(15.5,0),S); label("(E)",(20.5,0),S); [/asy]$

## Solution

The third view is a direct, head-on view of the cubes. Thus, you will only see the highest (or, in these cases, higher) tower in each up-down column. For figure $4$:

The highest tower in the first up-down column is $2$ in the upper-left box.

The highest tower in the second up-down column is the $3$ in the lower-middle box.

The highest tower in the third up-down column is the $4$ in the upper-right box.

Thus, the head-on view of this tower should have $2$ boxes on the left, $3$ in the middle, and $4$ on the right.

Diagram $\boxed{B}$ shows this description.

As trivia, option C shows the stack from the point of view of an observer on the right, facing towards the left.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 