During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

1999 AMC 8 Problems/Problem 5

Problem

A rectangular garden 60 feet long and 20 feet wide is enclosed by a fence. To make the garden larger, while using the same fence, its shape is changed to a square. By how many square feet does this enlarge the garden?

$\text{(A)}\ 100 \qquad \text{(B)}\ 200 \qquad \text{(C)}\ 300 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 500$

Solution

We need the same perimeter as a $60$ by $20$ rectangle, but the greatest area we can get. right now the perimeter is $160$. To get the greatest area while keeping a perimeter of $160$, the sides should all be $40$. that means an area of $1600$. Right now, the area is $20 \times 60$ which is $1200$. $1600-1200=400$ which is $\boxed{D}$.

See Also

1999 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS