# 2002 AIME I Problems/Problem 5

## Problem

Let $A_1,A_2,A_3,\cdots,A_{12}$ be the vertices of a regular dodecagon. How many distinct squares in the plane of the dodecagon have at least two vertices in the set $\{A_1,A_2,A_3,\cdots,A_{12}\} ?$

## Solution

There are 66 ways of picking two vertices. Note with any two vertices one can draw three squares (two with the vertices forming a side, another with the vertices forming the diagonal). So so far we have $66(3)=198$ squares, but we have overcounted since some squares have their other two vertices in the dodecagon as well. All 12 combinations of two distinct vertices that form a square side only form 3 squares, and all 12 combinations of two vertices that form a square diagonal only form 6 squares. So in total, we have overcounted by $9+6=15$, and $198-15=\fbox{183}$.

## See also

 2002 AIME I (Problems • Answer Key • Resources) Preceded byProblem 4 Followed byProblem 6 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS