# 2002 AMC 10A Problems/Problem 9

## Problem

There are 3 numbers A, B, and C, such that $1001C - 2002A = 4004$, and $1001B + 3003A = 5005$. What is the average of A, B, and C? $\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}$ Not uniquely determined

## Solution

Notice that we don't need to find what A, B, and C actually are, just their average. In other words, if we can find A+B+C, we will be done.

Adding up the equations gives $1001(A+B+C)=1001(9)$ so $A+B+C=9$ and the average is $\frac{9}{3}=3$. Our answer is $\boxed{\text{(B)}\ 3}$.

## See Also

 2002 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS