# 2002 AMC 10B Problems/Problem 5

## Problem

Circles of radius $2$ and $3$ are externally tangent and are circumscribed by a third circle, as shown in the figure. Find the area of the shaded region. $[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; real r1=3; real r2=2; real r3=5; pair A=(-2,0), B=(3,0), C=(0,0); pair X=(1,0), Y=(5,0); path circleA=Circle(A,r1); path circleB=Circle(B,r2); path circleC=Circle(C,r3); fill(circleC,gray); fill(circleA,white); fill(circleB,white); draw(circleA); draw(circleB); draw(circleC); draw(A--X); draw(B--Y); pair[] ps={A,B}; dot(ps); label("3",midpoint(A--X),N); label("2",midpoint(B--Y),N); [/asy]$ $\mathrm{(A) \ } 3\pi\qquad \mathrm{(B) \ } 4\pi\qquad \mathrm{(C) \ } 6\pi\qquad \mathrm{(D) \ } 9\pi\qquad \mathrm{(E) \ } 12\pi$

## Solution

A line going through the centers of the two smaller circles also go through the diameter. The length of this line within the circle is $3+3+2+2=10.$ Because this is the length of the larger circle's diameter, the length of its radius is $5.$

The area of the large circle is $25\pi$, and the area of the two smaller circles is $9\pi + 4\pi = 13\pi.$ To find the area of the shaded region, subtract the area of the two smaller circles from the area of the large circle. $\longrightarrow 25\pi - 13\pi = \boxed{\mathrm{(E) \ } 12\pi}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 