# 2002 AMC 10B Problems/Problem 9

## Problem

Using the letters $A$, $M$, $O$, $S$, and $U$, we can form five-letter "words". If these "words" are arranged in alphabetical order, then the "word" $USAMO$ occupies position $\mathrm{(A) \ } 112\qquad \mathrm{(B) \ } 113\qquad \mathrm{(C) \ } 114\qquad \mathrm{(D) \ } 115\qquad \mathrm{(E) \ } 116$

## Solution 1

There are $4!\cdot 4$ "words" beginning with each of the first four letters alphabetically. From there, there are $3!\cdot 3$ with $U$ as the first letter and each of the first three letters alphabetically. After that, the next "word" is $USAMO$, hence our answer is $4\cdot 4!+3\cdot 3!+1=\boxed{115\Rightarrow\text{(D)}}$.

## Solution 2

Let $A = 1$, $M = 2$, $O = 3$, $S = 4$, and $U = 5$. Then counting backwards, $54321, 54312, 54231, 54213, 54132, 54123$, so the answer is $\boxed{115\Rightarrow\text{(D)}}$

~ pi_is_3.14

## See Also

 2002 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS