2004 AIME I Problems/Problem 14

Problem

A unicorn is tethered by a $20$-foot silver rope to the base of a magician's cylindrical tower whose radius is $8$ feet. The rope is attached to the tower at ground level and to the unicorn at a height of $4$ feet. The unicorn has pulled the rope taut, the end of the rope is $4$ feet from the nearest point on the tower, and the length of the rope that is touching the tower is $\frac{a-\sqrt{b}}c$ feet, where $a, b,$ and $c$ are positive integers, and $c$ is prime. Find $a+b+c.$

Solution

[asy]    /* Settings */ import three; defaultpen(fontsize(10)+linewidth(0.62));  currentprojection = perspective(-2,-50,15); size(200);    /* Variables */ real x = 20 - ((750)^.5)/3, CE = 8*(6^.5) - 4*(5^.5), CD = 8*(6^.5), h = 4*CE/CD; pair Cxy = 8*expi((3*pi)/2-CE/8); triple Oxy = (0,0,0), A=(4*5^.5,-8,4), B=(0,-8,h), C=(Cxy.x,Cxy.y,0), D=(A.x,A.y,0), E=(B.x,B.y,0), O=(O.x,O.y,h); pair L = 8*expi(pi+0.05), R = 8*expi(-0.22); /* left and right cylinder lines, numbers from trial/error */    /* Drawing */ draw(B--A--D--E--B--C);  draw(circle(Oxy,8));  draw(circle(O,8));  draw((L.x,L.y,0)--(L.x,L.y,h)); draw((R.x,R.y,0)--(R.x,R.y,h)); draw(O--B--(A.x,A.y,h)--cycle,dashed);    /* Labeling */ label("\(A\)",A,NE);  dot(A);  label("\(B\)",B,NW);  dot(B); label("\(C\)",C,W);   dot(C); label("\(D\)",D,E);   dot(D); label("\(E\)",E,S);   dot(E); label("\(O\)",O,NW);  dot(O);  pair O1 = (25,4), A1=O1+(4*sqrt(5),-8), B1=O1+(0,-8); draw(circle(O1,8)); draw(O1--A1--B1--O1); label("\(A\)",A1,SE);label("\(B\)",B1,SW);label("\(O\)",O1,N); label("$8$",O1--B1,W);label("$4$",(5*A1+O1)/6,0.8*(1,1)); label("$8$",O1--A1,0.8*(-0.5,2));label("$4\sqrt{5}$",B1/2+A1/2,(0,-1)); [/asy]

Looking from an overhead view, call the center of the circle $O$, the tether point to the unicorn $A$ and the last point where the rope touches the tower $B$. $\triangle OAB$ is a right triangle because $OB$ is a radius and $BA$ is a tangent line at point $B$. We use the Pythagorean Theorem to find the horizontal component of $AB$ has length $4\sqrt{5}$.

[asy] defaultpen(fontsize(10)+linewidth(0.62)); pair A=(-4*sqrt(5),4), B=(0,4*(8*sqrt(6)-4*sqrt(5))/(8*sqrt(6))), C=(8*sqrt(6)-4*sqrt(5),0), D=(-4*sqrt(5),0), E=(0,0); draw(A--C--D--A);draw(B--E); label("\(A\)",A,(-1,1));label("\(B\)",B,(1,1));label("\(C\)",C,(1,0));label("\(D\)",D,(-1,-1));label("\(E\)",E,(0,-1)); label("$4\sqrt{5}$",D/2+E/2,(0,-1));label("$8\sqrt{6}-4\sqrt{5}$",C/2+E/2,(0,-1)); label("$4$",D/2+A/2,(-1,0));label("$x$",C/2+B/2,(1,0.5));label("$20-x$",0.7*A+0.3*B,(1,0.5)); dot(A^^B^^C^^D^^E); [/asy]

Now look at a side view and "unroll" the cylinder to be a flat surface. Let $C$ be the bottom tether of the rope, let $D$ be the point on the ground below $A$, and let $E$ be the point directly below $B$. Triangles $\triangle CDA$ and $\triangle CEB$ are similar right triangles. By the Pythagorean Theorem $CD=8\cdot\sqrt{6}$.

Let $x$ be the length of $CB$. \[\frac{CA}{CD}=\frac{CB}{CE}\implies \frac{20}{8\sqrt{6}}=\frac{x}{8\sqrt{6}-4\sqrt{5}}\implies x=\frac{60-\sqrt{750}}{3}\]

Therefore $a=60, b=750, c=3, a+b+c=\boxed{813}$.

Solution 2

Note that by Power of a Point, the point the unicorn is at has power $4 \cdot 20 = 80$ which implies that the tangent from that point to the tower is of length $\sqrt{80}=4\sqrt{5},$ however this is length of the rope projected into 2-D. If we let $\theta$ be the angle between the horizontal and the rope, we have that $\cos\theta=\frac{1}{5}$ which implies that $\sin\theta=\frac{2\sqrt{6}}{5}.$ Note that the portion of rope not on the tower is $4\sqrt{5} \cdot \frac{5}{2\sqrt{6}}= \frac{5\sqrt{30}}{3},$ the requested length of rope is $20-\frac{5\sqrt{30}}{3}=\frac{60-\sqrt{750}}{3}$ thus the requested sum is $\boxed{813}.$

~ Dhillonr25

See also

2004 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png