# 2004 AMC 12B Problems/Problem 16

## Problem

A function $f$ is defined by $f(z) = i\overline{z}$, where $i=\sqrt{-1}$ and $\overline{z}$ is the complex conjugate of $z$. How many values of $z$ satisfy both $|z| = 5$ and $f(z) = z$? $\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2 \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 8$

## Solutions

### Solution 1

Let $z = a+bi$, so $\overline{z} = a-bi$. By definition, $z = a+bi = f(z) = i(a-bi) = b+ai$, which implies that all solutions to $f(z) = z$ lie on the line $y=x$ on the complex plane. The graph of $|z| = 5$ is a circle centered at the origin, and there are $2 \Rightarrow \mathrm{(C)}$ intersections.

### Solution 2

We start the same as the above solution: Let $z = a+bi$, so $\overline{z} = a-bi$. By definition, $z = a+bi = f(z) = i(a-bi) = b+ai$. Since we are given $|z| = 5$, this implies that $a^2+b^2=25$. We recognize the Pythagorean triple $3,4,5$ so we see that $(a,b)=(3,4)$ or $(4,3)$. So the answer is $2 \Rightarrow \mathrm{(C)}$.

Solution by franzliszt

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 