# 2004 AMC 12B Problems/Problem 5

The following problem is from both the 2004 AMC 12B #5 and 2004 AMC 10B #7, so both problems redirect to this page.

## Problem

On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving $10$ Canadian dollars for every $7$ U.S. dollars. After spending $60$ Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?

$\mathrm{(A)\ }5\qquad\mathrm{(B)\ }6\qquad\mathrm{(C)\ }7\qquad\mathrm{(D)\ }8\qquad\mathrm{(E)\ }9$

## Solution 1

Isabella had $60+d$ Canadian dollars. Setting up an equation we get $d=\frac{7}{10}\cdot(60+d)$, which solves to $d=140$, and the sum of digits of $d$ is $\boxed{\mathrm{(A)}\ 5}$.

## Solution 2

Each time Isabella exchanges $7$ U.S. dollars, she gets $7$ Canadian dollars and $3$ Canadian dollars extra. Isabella received a total of $60$ Canadian dollars extra, therefore she exchanged $7$ U.S. dollars $\frac{60}{3}=20$ times. Thus $d=7\cdot20=140$, and the sum of the digits is $\boxed{\mathrm{(A)}\ 5}$.

## Video Solution 1

~Education, the Study of Everything