# 2006 AIME I Problems/Problem 5

## Problem

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $abc$.

## Solution 1

We begin by equating the two expressions: $$a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$$

Squaring both sides yields: $$2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006$$

Since $a$, $b$, and $c$ are integers, we can match coefficients: \begin{align*} 2ab\sqrt{6} &= 104\sqrt{6} \\ 2ac\sqrt{10} &=468\sqrt{10} \\ 2bc\sqrt{15} &=144\sqrt{15}\\ 2a^2 + 3b^2 + 5c^2 &=2006 \end{align*}

Solving the first three equations gives: $\begin{eqnarray*}ab &=& 52\\ ac &=& 234\\ bc &=& 72 \end{eqnarray*}$

Multiplying these equations gives $(abc)^2 = 52 \cdot 234 \cdot 72 = 2^63^413^2 \Longrightarrow abc = \boxed{936}$.

## Solution 2

We realize that the quantity under the largest radical is a perfect square and attempt to rewrite the radicand as a square. Start by setting $x=\sqrt{2}$, $y=\sqrt{3}$, and $z=\sqrt{5}$. Since $$(px+qy+rz)^2=p^2x^2+q^2y^2+r^2z^2+2(pqxy+prxz+qryz)$$

we attempt to rewrite the radicand in this form: $$2006+2(52xy+234xz+72yz)$$

Factoring, we see that $52=13\cdot4$, $234=13\cdot18$, and $72=4\cdot18$. Setting $p=13$, $q=4$, and $r=18$, we see that $$2006=13^2x^2+4^2y^2+18^2z^2=169\cdot2+16\cdot3+324\cdot5$$

so our numbers check. Thus $104\sqrt{2}+468\sqrt{3}+144\sqrt{5}+2006=(13\sqrt{2}+4\sqrt{3}+18\sqrt{5})^2$. Square rooting gives us $13\sqrt{2}+4\sqrt{3}+18\sqrt{5}$ and our answer is $13\cdot4\cdot18=\boxed{936}$

## See also

 2006 AIME I (Problems • Answer Key • Resources) Preceded byProblem 4 Followed byProblem 6 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS