2006 AIME I Problems/Problem 9

Problem

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r,$ where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r).$

Solution 1

\[\log_8 a_1+\log_8 a_2+\ldots+\log_8 a_{12}= \log_8 a+\log_8 (ar)+\ldots+\log_8 (ar^{11}) \\ = \log_8(a\cdot ar\cdot ar^2\cdot \cdots \cdot ar^{11}) = \log_8  (a^{12}r^{66})\]

So our question is equivalent to solving $\log_8 (a^{12}r^{66})=2006$ for $a, r$ positive integers. $a^{12}r^{66}=8^{2006} = (2^3)^{2006} = (2^6)^{1003}$ so $a^{2}r^{11}=2^{1003}$.

The product of $a^2$ and $r^{11}$ is a power of 2. Since both numbers have to be integers, this means that $a$ and $r$ are themselves powers of 2. Now, let $a=2^x$ and $r=2^y$:

\begin{eqnarray*}(2^x)^2\cdot(2^y)^{11}&=&2^{1003}\\ 2^{2x}\cdot 2^{11y}&=&2^{1003}\\ 2x+11y&=&1003\\ y&=&\frac{1003-2x}{11} \end{eqnarray*}

For $y$ to be an integer, the numerator must be divisible by $11$. This occurs when $x=1$ because $1001=91*11$. Because only even integers are being subtracted from $1003$, the numerator never equals an even multiple of $11$. Therefore, the numerator takes on the value of every odd multiple of $11$ from $11$ to $1001$. Since the odd multiples are separated by a distance of $22$, the number of ordered pairs that work is $1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46$. (We must add 1 because both endpoints are being included.) So the answer is $\boxed{046}$.


For the step above, you may also simply do $1001/11 + 1 = 91 + 1 = 92$ to find how many multiples of $11$ there are in between $11$ and $1001$. Then, divide $92/2$ = $\boxed{046}$ to find only the odd solutions. $-XxHalo711$


Another way is to write

$x = \frac{1003-11y}2$

Since $1003/11 = 91 + 2/11$, the answer is just the number of odd integers in $[1,91]$, which is, again, $\boxed{046}$.


Solution 2

Using the above method, we can derive that $a^{2}r^{11} = 2^{1003}$. Now, think about what happens when r is an even power of 2. Then $a^{2}$ must be an odd power of 2 in order to satisfy the equation which is clearly not possible. Thus the only restriction r has is that it must be an odd power of 2, so $2^{1}$, $2^{3}$, $2^{5}$ .... all work for r, until r hits $2^{93}$, when it gets greater than $2^{1003}$, so the greatest value for r is $2^{91}$. All that's left is to count the number of odd integers between 1 and 91 (inclusive), which yields $\boxed{046}$.

Solution 3

Using the method from Solution 1, we get $\log_8a^{12}r^{66}=2006 \implies a^{12}r^{66}=8^{2006}=2^{6018}$.

Since $a$ and $r$ both have to be powers of $2$, we can rewrite this as $12x+66y=6018$.

$6018 \equiv 66 \equiv 6\pmod{12}$. So, when we subtract $12$ from $6018$, the result is divisible by $66$. Evaluating that, we get $(1,91)$ as a valid solution. Since $66 \cdot 2 = 12 \cdot 11$, when we add $11$ to the value of $a$, we can subtract $2$ from the value of $r$ to keep the equation valid. Using this, we get $(1,91),(12,89),(23,87), \cdots (541,1)$. In order to count the number of ordered pairs, we can simply count the number of $y$ values. Every odd number from $1$ to $91$ is included, so we have $\boxed{046}$ solutions.

-Phunsukh Wangdu

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png