2007 AMC 12A Problems/Problem 13

Problem

A piece of cheese is located at $(12,10)$ in a coordinate plane. A mouse is at $(4,-2)$ and is running up the line $y=-5x+18$. At the point $(a,b)$ the mouse starts getting farther from the cheese rather than closer to it. What is $a+b$?

$\mathrm{(A)}\ 6\qquad \mathrm{(B)}\ 10\qquad \mathrm{(C)}\ 14\qquad \mathrm{(D)}\ 18\qquad \mathrm{(E)}\ 22$


Solution 1

The point $(a,b)$ is the foot of the perpendicular from $(12,10)$ to the line $y=-5x+18$. The perpendicular has slope $\frac{1}{5}$, so its equation is $y=10+\frac{1}{5}(x-12)=\frac{1}{5}x+\frac{38}{5}$. The $x$-coordinate at the foot of the perpendicular satisfies the equation $\frac{1}{5}x+\frac{38}{5}=-5x+18$, so $x=2$ and $y=-5\cdot2+18=8$. Thus $(a,b) = (2,8)$, and $a+b = \boxed{10}$.

Solution 2

If the mouse is at $(x, y) = (x, 18 - 5x)$, then the square of the distance from the mouse to the cheese is $(x - 12)^2 + (8 - 5x)^2 = 26(x^2 - 4x + 8) = 26((x - 2)^2 + 4).$ The value of this expression is smallest when $x = 2$, so the mouse is closest to the cheese at the point $(2, 8)$, and $a+b=2+8 = \boxed{10}$.

Solution 3

We are trying to find the point where distance between the mouse and $(12, 10)$ is minimized. This point is where the line that passes through $(12, 10)$ and is perpendicular to $y=-5x+18$ intersects $y=-5x+18$. By basic knowledge of perpendicular lines, this line is $y=\frac{x}{5}+\frac{38}{5}$. This line intersects $y=-5x+18$ at $(2,8)$. So $a+b=\boxed{10}$. - MegaLucario1001


Solution 4

If the mouse is at $(x, y) = (x, 18 - 5x)$, then the square of the distance from the mouse to the cheese is $(x - 12)^2 + (8 - 5x)^2 = 26(x^2 - 4x + 8) = 26((x - 2)^2 + 4)$. The value of this expression is smallest when $x = 2$, so the mouse is closest to the cheese at the point $(2, 8)$, and $a+b=2+8 = \boxed{10}$. -Paixiao

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png