# 2007 AMC 8 Problems/Problem 2

## Problem $650$ students were surveyed about their pasta preferences. The choices were lasagna, manicotti, ravioli and spaghetti. The results of the survey are displayed in the bar graph. What is the ratio of the number of students who preferred spaghetti to the number of students who preferred manicotti? $[asy] size(200); defaultpen(linewidth(0.7)); defaultpen(fontsize(8)); draw(origin--(0,250)); int i; for(i=0; i<6; i=i+1) { draw((0,50*i)--(5,50*i)); } filldraw((25,0)--(75,0)--(75,150)--(25,150)--cycle, gray, black); filldraw((75,0)--(125,0)--(125,100)--(75,100)--cycle, gray, black); filldraw((125,0)--(175,0)--(175,150)--(125,150)--cycle, gray, black); filldraw((225,0)--(175,0)--(175,250)--(225,250)--cycle, gray, black); label("50", (0,50), W); label("100", (0,100), W); label("150", (0,150), W); label("200", (0,200), W); label("250", (0,250), W); label(rotate(90)*"Lasagna", (50,0), S); label(rotate(90)*"Manicotti", (100,0), S); label(rotate(90)*"Ravioli", (150,0), S); label(rotate(90)*"Spaghetti", (200,0), S); label(rotate(90)*"\mbox{Number of People}", (-40,140), W); [/asy]$ $\mathrm{(A)} \frac{2}{5} \qquad \mathrm{(B)} \frac{1}{2} \qquad \mathrm{(C)} \frac{5}{4} \qquad \mathrm{(D)} \frac{5}{3} \qquad \mathrm{(E)} \frac{5}{2}$

## Solution

The answer is $\dfrac{\text{number of students who preferred spaghetti}}{\text{number of students who preferred manicotti}}$

So, $\frac{250}{100}$

Simplify, $\frac{5}{2}$

The answer is $\boxed{\textbf{(E)}\ \dfrac{5}{2}}$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 