2011 AMC 8 Problems/Problem 13

Problem

Two congruent squares, $ABCD$ and $PQRS$, have side length $15$. They overlap to form the $15$ by $25$ rectangle $AQRD$ shown. What percent of the area of rectangle $AQRD$ is shaded?

[asy] filldraw((0,0)--(25,0)--(25,15)--(0,15)--cycle,white,black); label("D",(0,0),S); label("R",(25,0),S); label("Q",(25,15),N); label("A",(0,15),N); filldraw((10,0)--(15,0)--(15,15)--(10,15)--cycle,mediumgrey,black); label("S",(10,0),S); label("C",(15,0),S); label("B",(15,15),N); label("P",(10,15),N);[/asy]

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 25$

Solution

The overlap length is $2(15)-25=5$, so the shaded area is $5 \cdot 15 =75$. The area of the whole shape is $25 \cdot 15 = 375$. The fraction $\dfrac{75}{375}$ reduces to $\dfrac{1}{5}$ or 20%. Therefore, the answer is $\boxed{ \textbf{(C)}\ \text{20} }$

Solution 2

The length of BP is 5. the ratio of the areas is $\dfrac{5\cdot 15}{25\cdot 15}=\dfrac{5}{25}=20\%$ -Megacleverstarfish15

Video Solution

https://www.youtube.com/watch?v=mYn6tNxrWBU

~==SpreadTheMathLove==

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png