2011 AMC 8 Problems/Problem 17

Problem

Let $w$, $x$, $y$, and $z$ be whole numbers. If $2^w \cdot 3^x \cdot 5^y \cdot 7^z = 588$, then what does $2w + 3x + 5y + 7z$ equal?

$\textbf{(A) } 21\qquad\textbf{(B) }25\qquad\textbf{(C) }27\qquad\textbf{(D) }35\qquad\textbf{(E) }56$

Solution

The prime factorization of $588$ is $2^2\cdot3\cdot7^2.$ We can see $w=2, x=1,$ and $z=2.$ Because $5^0=1, y=0.$

\[2w+3x+5y+7z=4+3+0+14=\boxed{\textbf{(A)}\ 21}\]

Video Solution

https://youtu.be/PxBKpg-HKu8 ~David

Video Solution 2

https://youtu.be/5vpKkAue8Is. Soo, DRMS, NM

Video Solution 3

https://youtu.be/_4KL96b9vbY

~savannahsolver

Video Solution 4 by SpreadTheMathLove

https://www.youtube.com/watch?v=mYn6tNxrWBU

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png