# 2014 AMC 10B Problems/Problem 9

## Problem

For real numbers $w$ and $z$, $$\cfrac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014.$$ What is $\frac{w+z}{w-z}$? $\textbf{(A) }-2014\qquad\textbf{(B) }\frac{-1}{2014}\qquad\textbf{(C) }\frac{1}{2014}\qquad\textbf{(D) }1\qquad\textbf{(E) }2014$

## Solution

Multiply the numerator and denominator of the LHS by $wz$ to get $\frac{z+w}{z-w}=2014$. Then since $z+w=w+z$ and $w-z=-(z-w)$, $\frac{w+z}{w-z}=-\frac{z+w}{z-w}=-2014$, or choice $\boxed{A}$.

## Solution 2

Muliply both sides by $\left(\frac{1}{w}-\frac{1}{z}\right)$ to get $\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)$. Then, add $2014\cdot\frac{1}{z}$ to both sides and subtract $\frac{1}{w}$ from both sides to get $2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}$. Then, we can plug in the most simple values for z and w ( $2015$ and $2013$, respectively), and find $\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014$, or answer choice $\boxed{A}$.

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 