2015 AIME II Problems

2015 AIME II (Answer Key)
Printable version | AoPS Contest CollectionsPDF


  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Let $N$ be the least positive integer that is both $22$ percent less than one integer and $16$ percent greater than another integer. Find the remainder when $N$ is divided by $1000$.


Problem 2

In a new school, $40$ percent of the students are freshmen, $30$ percent are sophomores, $20$ percent are juniors, and $10$ percent are seniors. All freshmen are required to take Latin, and $80$ percent of sophomores, $50$ percent of the juniors, and $20$ percent of the seniors elect to take Latin. The probability that a randomly chosen Latin student is a sophomore is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.


Problem 3

Let $m$ be the least positive integer divisible by $17$ whose digits sum to $17$. Find $m$.


Problem 4

In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$, and the altitude to these bases has length $\log 16$. The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$, where $p$ and $q$ are positive integers. Find $p + q$.


Problem 5

Two unit squares are selected at random without replacement from an $n \times n$ grid of unit squares. Find the least positive integer $n$ such that the probability that the two selected unit squares are horizontally or vertically adjacent is less than $\frac{1}{2015}$.


Problem 6

Steve says to Jon, "I am thinking of a polynomial whose roots are all positive integers. The polynomial has the form $P(x) = 2x^3-2ax^2+(a^2-81)x-c$ for some positive integers $a$ and $c$. Can you tell me the values of $a$ and $c$?"

After some calculations, Jon says, "There is more than one such polynomial."

Steve says, "You're right. Here is the value of $a$." He writes down a positive integer and asks, "Can you tell me the value of $c$?"

Jon says, "There are still two possible values of $c$."

Find the sum of the two possible values of $c$.


Problem 7

Triangle $ABC$ has side lengths $AB = 12$, $BC = 25$, and $CA = 17$. Rectangle $PQRS$ has vertex $P$ on $\overline{AB}$, vertex $Q$ on $\overline{AC}$, and vertices $R$ and $S$ on $\overline{BC}$. In terms of the side length $PQ = w$, the area of $PQRS$ can be expressed as the quadratic polynomial

\[\text{Area}(PQRS) = \alpha w - \beta \cdot w^2.\]

Then the coefficient $\beta = \frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.


Problem 8

Let $a$ and $b$ be positive integers satisfying $\frac{ab+1}{a+b} < \frac{3}{2}$. The maximum possible value of $\frac{a^3b^3+1}{a^3+b^3}$ is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.


Problem 9

A cylindrical barrel with radius $4$ feet and height $10$ feet is full of water. A solid cube with side length $8$ feet is set into the barrel so that the diagonal of the cube is vertical. The volume of water thus displaced is $v$ cubic feet. Find $v^2$.

[asy] import three; import solids; size(5cm); currentprojection=orthographic(1,-1/6,1/6);  draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,360)),white,nolight);  triple A =(8*sqrt(6)/3,0,8*sqrt(3)/3), B = (-4*sqrt(6)/3,4*sqrt(2),8*sqrt(3)/3), C = (-4*sqrt(6)/3,-4*sqrt(2),8*sqrt(3)/3), X = (0,0,-2*sqrt(2));  draw(X--X+A--X+A+B--X+A+B+C); draw(X--X+B--X+A+B); draw(X--X+C--X+A+C--X+A+B+C); draw(X+A--X+A+C); draw(X+C--X+C+B--X+A+B+C,linetype("2 4")); draw(X+B--X+C+B,linetype("2 4"));  draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,240)),white,nolight); draw((-2,-2*sqrt(3),0)..(4,0,0)..(-2,2*sqrt(3),0)); draw((-4*cos(atan(5)),-4*sin(atan(5)),0)--(-4*cos(atan(5)),-4*sin(atan(5)),-10)..(4,0,-10)..(4*cos(atan(5)),4*sin(atan(5)),-10)--(4*cos(atan(5)),4*sin(atan(5)),0)); draw((-2,-2*sqrt(3),0)..(-4,0,0)..(-2,2*sqrt(3),0),linetype("2 4")); [/asy]


Problem 10

Call a permutation $a_1, a_2, \ldots, a_n$ of the integers $1, 2, \ldots, n$ quasi-increasing if $a_k \leq a_{k+1} + 2$ for each $1 \leq k \leq n-1$. For example, $53421$ and $14253$ are quasi-increasing permutations of the integers $1, 2, 3, 4, 5$, but $45123$ is not. Find the number of quasi-increasing permutations of the integers $1, 2, \ldots, 7$.


Problem 11

The circumcircle of acute $\triangle ABC$ has center $O$. The line passing through point $O$ perpendicular to $\overline{OB}$ intersects lines $AB$ and $BC$ at $P$ and $Q$, respectively. Also $AB=5$, $BC=4$, $BQ=4.5$, and $BP=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.


Problem 12

There are $2^{10} = 1024$ possible $10$-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than $3$ adjacent letters that are identical.


Problem 13

Define the sequence $a_1, a_2, a_3, \ldots$ by $a_n = \sum\limits_{k=1}^n \sin{k}$, where $k$ represents radian measure. Find the index of the 100th term for which $a_n < 0$.


Problem 14

Let $x$ and $y$ be real numbers satisfying $x^4y^5+y^4x^5=810$ and $x^3y^6+y^3x^6=945$. Evaluate $2x^3+(xy)^3+2y^3$.


Problem 15

Circles $\mathcal{P}$ and $\mathcal{Q}$ have radii $1$ and $4$, respectively, and are externally tangent at point $A$. Point $B$ is on $\mathcal{P}$ and point $C$ is on $\mathcal{Q}$ such that $BC$ is a common external tangent of the two circles. A line $\ell$ through $A$ intersects $\mathcal{P}$ again at $D$ and intersects $\mathcal{Q}$ again at $E$. Points $B$ and $C$ lie on the same side of $\ell$, and the areas of $\triangle DBA$ and $\triangle ACE$ are equal. This common area is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

[asy] import cse5; pathpen=black; pointpen=black; size(6cm);  pair E = IP(L((-.2476,1.9689),(0.8,1.6),-3,5.5),CR((4,4),4)), D = (-.2476,1.9689);  filldraw(D--(0.8,1.6)--(0,0)--cycle,gray(0.7)); filldraw(E--(0.8,1.6)--(4,0)--cycle,gray(0.7)); D(CR((0,1),1)); D(CR((4,4),4,150,390)); D(L(MP("D",D(D),N),MP("A",D((0.8,1.6)),NE),1,5.5)); D((-1.2,0)--MP("B",D((0,0)),S)--MP("C",D((4,0)),S)--(8,0)); D(MP("E",E,N)); [/asy]


2015 AIME II (ProblemsAnswer KeyResources)
Preceded by
2015 AIME I Problems
Followed by
2016 AIME I Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png