2020 AMC 12A Problems/Problem 9

Problem

How many solutions does the equation $\tan(2x)=\cos(\tfrac{x}{2})$ have on the interval $[0,2\pi]?$

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

We count the intersections of the graphs of $y=\tan(2x)$ and $y=\cos\left(\frac x2\right):$

  1. The graph of $y=\tan(2x)$ has a period of $\frac{\pi}{2},$ asymptotes at $x=\frac{\pi}{4}+\frac{k\pi}{2},$ and zeros at $x=\frac{k\pi}{2}$ for some integer $k.$

    On the interval $[0,2\pi],$ the graph has five branches: \[\biggl[0,\frac{\pi}{4}\biggr),\left(\frac{\pi}{4},\frac{3\pi}{4}\right),\left(\frac{3\pi}{4},\frac{5\pi}{4}\right),\left(\frac{5\pi}{4},\frac{7\pi}{4}\right),\left(\frac{7\pi}{4},2\pi\right].\] Note that $\tan(2x)\in[0,\infty)$ for the first branch, $\tan(2x)\in(-\infty,\infty)$ for the three middle branches, and $\tan(2x)\in(-\infty,0]$ for the last branch. Moreover, all branches are strictly increasing.

  2. The graph of $y=\cos\left(\frac x2\right)$ has a period of $4\pi$ and zeros at $x=\pi+2k\pi$ for some integer $k.$

    On the interval $[0,2\pi],$ note that $\cos\left(\frac x2\right)\in[-1,1].$ Moreover, the graph is strictly decreasing.

The graphs of $y=\tan(2x)$ and $y=\cos\left(\frac x2\right)$ intersect once on each of the five branches of $y=\tan(2x),$ as shown below: [asy] /* Made by MRENTHUSIASM */ size(800,200);   real f(real x) { return tan(2*x); }  real g(real x) { return cos(x/2); }  draw(graph(f,0,atan(3)/2),red,"$y=\tan(2x)$"); draw(graph(f,-atan(3)/2+pi/2,atan(3)/2+pi/2),red); draw(graph(f,-atan(3)/2+2*pi/2,atan(3)/2+2*pi/2),red); draw(graph(f,-atan(3)/2+3*pi/2,atan(3)/2+3*pi/2),red); draw(graph(f,-atan(3)/2+4*pi/2,2*pi),red); draw(graph(g,0,2pi),blue,"$y=\cos\left(\frac x2\right)$");  real xMin = 0; real xMax = 9/4*pi; real yMin = -3; real yMax = 3;  //Draws the horizontal gridlines void horizontalLines() {   for (real i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (real i = xMin+pi/2; i < xMax; i+=pi/2)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  //Draws the horizontal ticks void horizontalTicks() {   for (real i = yMin+1; i < yMax; ++i)   {     draw((-1/8,i)--(1/8,i), black+linewidth(1));   } }  //Draws the vertical ticks void verticalTicks() {   for (real i = xMin+pi/2; i < xMax; i+=pi/2)   {     draw((i,-1/8)--(i,1/8), black+linewidth(1));   } }  horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("$x$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2));  pair A[], B[]; A[0] = (2pi,0); A[1] = (0,2); A[2] = (0,0); A[3] = (0,-2); B[0] = intersectionpoints(graph(f,0,atan(3)/2),graph(g,0,2pi))[0]; B[1] = intersectionpoints(graph(f,-atan(3)/2+pi/2,atan(3)/2+pi/2),graph(g,0,2pi))[0]; B[2] = intersectionpoints(graph(f,-atan(3)/2+2*pi/2,atan(3)/2+2*pi/2),graph(g,0,2pi))[0]; B[3] = intersectionpoints(graph(f,-atan(3)/2+3*pi/2,atan(3)/2+3*pi/2),graph(g,0,2pi))[0]; B[4] = intersectionpoints(graph(f,-atan(3)/2+4*pi/2,atan(3)/2+4*pi/2),graph(g,0,2pi))[0];  label("$2\pi$",A[0],(0,-2.5)); label("$2$",A[1],(-2.5,0)); label("$0$",A[2],(-2.5,0)); label("$-2$",A[3],(-2.5,0));  for (int i = 0; i < 5; ++i) { 	dot(B[i],black+linewidth(5)); }  add(legend(),point(E),60E,UnFill); [/asy] Therefore, the answer is $\boxed{\textbf{(E)}\ 5}.$

~MRENTHUSIASM ~lopkiloinm ~hi13 ~annabelle0913 ~codecow

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS