# 2022 AMC 8 Problems/Problem 18

## Problem

The midpoints of the four sides of a rectangle are $(-3,0), (2,0), (5,4),$ and $(0,4).$ What is the area of the rectangle? $\textbf{(A) } 20 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 40 \qquad \textbf{(D) } 50 \qquad \textbf{(E) } 80$

## Solution 1

The midpoints of the four sides of every rectangle are the vertices of a rhombus whose area is half the area of the rectangle: Note that the diagonals of the rhombus have the same lengths as the sides of the rectangle.

Let $A=(-3,0), B=(2,0), C=(5,4),$ and $D=(0,4).$ Note that $A,B,C,$ and $D$ are the vertices of a rhombus whose diagonals have lengths $AC=4\sqrt{5}$ and $BD=2\sqrt{5}.$ It follows that the dimensions of the rectangle are $4\sqrt{5}$ and $2\sqrt{5},$ so the area of the rectangle is $4\sqrt{5}\cdot2\sqrt{5}=\boxed{\textbf{(C) } 40}.$

~MRENTHUSIASM

## Solution 2

If a rectangle has area $K,$ then the area of the quadrilateral formed by its midpoints is $\frac{K}{2}.$

Define points $A,B,C,$ and $D$ as Solution 1 does. Since $A,B,C,$ and $D$ are the midpoints of the rectangle, the rectangle's area is $2[ABCD].$ Now, note that $ABCD$ is a parallelogram since $AB=CD$ and $\overline{AB}\parallel\overline{CD}.$ As the parallelogram's height from $D$ to $\overline{AB}$ is $4$ and $AB=5,$ its area is $4\cdot5=20.$ Therefore, the area of the rectangle is $20\cdot2=\boxed{\textbf{(C) } 40}.$

~Fruitz

~Interstigation

~Ismail.maths93

~STEMbreezy

~savannahsolver

## Video Solution (CREATIVE THINKING!!!)

~Education, the Study of Everything

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 