2024 AMC 10A Problems/Problem 18

The following problem is from both the 2024 AMC 10A #18 and 2024 AMC 12A #11, so both problems redirect to this page.

Problem

There are exactly $K$ positive integers $b$ with $5 \leq b \leq 2024$ such that the base-$b$ integer $2024_b$ is divisible by $16$ (where $16$ is in base ten). What is the sum of the digits of $K$?

$\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad\textbf{(E) }21$

Solution 1

$2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8$, if $b$ even then $b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8$. If $b$ odd then $b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8$ so $2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8$. Now $8\mid 2024$ so $\frac38\cdot 2024=759$ but $3$ is too small so $759 - 1 = 758\implies\boxed{\textbf{(D) }20}$.

~OronSH ~mathkiddus ~andliu766 ~megaboy6679

Solution 2

2024b0(mod16)2b3+2b+40(mod16)b3+b+20(mod8)

Clearly, $b$ is either even or odd. If $b$ is even, let $b=2a$.

(2a)3+2a+20(mod8)8a3+2a+20(mod8)0+2a+20(mod8)a+10(mod4)a3(mod4)

Thus, one solution is $b=2(4x+3)=8x+6$ for some integer $x$, or $b\equiv6\pmod8$.

What if $b$ is odd? Then let $b=2a+1$:

(2a+1)3+2a+1+20(mod8)8a3+12a2+6a+1+2a+1+20(mod8)8a3+12a2+8a+40(mod8)4a2+40(mod8)a21(mod2)

This simply states that $a$ is odd. Thus, the other solution is $b=2(2x+1)+1=4x+3$ for some integer $x$, or $b\equiv3\pmod4$.

We now simply must count the number of integers between $5$ and $2024$, inclusive, that are $6$ mod $8$ or $3$ mod $4$. Note that the former case comprises even numbers only while the latter is only odd; thus, there is no overlap and we can safely count the number of each and add them.

In the former case, we have the numbers $6,14,22,30,\dots,2022$; this list is equivalent to $8,16,24,32,\dots,2024\cong1,2,3,4,\dots,253$, which comprises $253$ numbers. In the latter case, we have the numbers $7,11,15,19,\dots,2023\cong4,8,12,16,\dots,2020\cong1,2,3,4,\dots,505$, which comprises $505$ numbers. There are $758$ numbers in total, so our answer is $7+5+8=\boxed{\textbf{(D) 20}}$.

~Technodoggo

Solution 3

Note that $2024_b=2b^3+2b+4$ is to be divisible by $16$, which means that $b^3+b+2$ is divisible by $8$.

If $b=0$, then $b^3+b+2 \equiv (0)^3 + (0) + 2 \equiv 2$ is not divisible by $8$.

If $b=1$, then $b^3+b+2 \equiv (1)^3 + (1) + 2  \equiv 4$ is not divisible by $8$.

If $b=2$, then $b^3+b+2 \equiv (2)^3 + (2) + 2  \equiv 4$ is not divisible by $8$.

If $b=3$, then $b^3+b+2 \equiv (3)^3 + (3) + 2  \equiv (8+1)\cdot3 + (3) + 2 \equiv 8$ is divisible by $8$.

If $b=4$, then $b^3+b+2 \equiv (4)^3 + (4) + 2 \equiv 0 + 4 + 2 \equiv 6$ is not divisible by $8$.

If $b=5$, then $b^3+b+2 \equiv (-3)^3 + (-3) + 2 \equiv  (8+1)\cdot 3 + (-3) + 2 \equiv 2$ is not divisible by $8$.

If $b=6$, then $b^3+b+2 \equiv (-2)^3 + (-2) + 2 \equiv -8 + (-2) + 2 \equiv 0$ is divisible by $8$.

If $b=7$, then $b^3+b+2 \equiv (-1)^3 + (-1) + 2 \equiv -1 + (-1) + 2 \equiv 0$ is divisible by $8$.

Therefore, for every $8$ values of $b$, $3$ of them will make $b^3+b+2$ divisible by $8$. Therefore, since $2024$ is divisible by $8$, $\dfrac{3}{8}\cdot2024=759$ values of $b$, but this includes $b=3$, which does not satisfy the given inequality. Therefore, the answer is \[759-1=758\rightarrow7+5+8=\boxed{\text{(D) }20}\] ~Tacos_are_yummy_1

More detail by ~luckuso

Solution 4

$2024_b=2\ast\ b^3+2\ast\ b+4\ \\ {2024}_{\left(b+8\right)}=2\ast\left(b+8\right)^3+2\ast\left(b+8\right)+4$ ${2024}_{\left(b+8\right)}-{2024}_b=2*\left(8\right)*\left(b^2+8b+64\right)+2*8\ =16*\left(b^2+8b+64\right)+16$

2024(b+8)2024b0 (mod 16)2024(b+8)  2024b  (mod 16)202404 (mod 16)202418 (mod 16)202426 (mod 16)202430(mod 16)2024412(mod 16)202458(mod 16)202460(mod 16)202470(mod 16)

We need $b\ \equiv3\ (mod\ 8)\ \ or\ b\ \equiv6\ (mod\ 8)\ \ or\ b\ \equiv7\ (mod\ 8) \\ \lfloor(2024-3)/8\rfloor+\lfloor(2024-6)/8\rfloor+\lfloor(2024-7)/8\rfloor+3=759$ take away one because $b=3$ is out of range, so $758\Rightarrow7+8+5=\boxed{\text{(D) }20}$


Video Solution by Power Solve

https://www.youtube.com/watch?v=qtFvaD9TEaA

Video Solution by Pi Academy

https://youtu.be/fW7OGWee31c?si=oq7toGPh2QaksLHE

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png