Cauchy-Schwarz Inequality

(Redirected from Cauchy-Schwarz inequality)

In algebra, the Cauchy-Schwarz Inequality, also known as the Cauchy–Bunyakovsky–Schwarz Inequality or informally as Cauchy-Schwarz, is an inequality with many ubiquitous formulations in abstract algebra, calculus, and contest mathematics. In high-school competitions, its applications are limited to elementary and linear algebra.

Its elementary algebraic formulation is often referred to as Cauchy's Inequality and states that for any list of reals $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$, \[(a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) \geq (a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2,\] with equality if and only if there exists a constant $t$ such that $a_n = t b_n$ for all $1 \leq t \leq n$, or if every number in one of the lists is zero. Along with the AM-GM Inequality, Cauchy-Schwarz forms the foundation for inequality problems in intermediate and olympiad competitions. It is particularly crucial in proof-based contests.

Its vector formulation states that for any vectors $\overrightarrow{v}$ and $\overrightarrow{w}$ in $\mathbb{R}^n$, where $\overrightarrow{v} \cdot \overrightarrow{w}$ is the dot product of $\overrightarrow{v}$ and $\overrightarrow{w}$ and $\| \overrightarrow{v} \|$ is the norm of $\overrightarrow{v}$, \[\|\overrightarrow{v}\| \|\overrightarrow{w}\| \geq |\overrightarrow{v} \cdot \overrightarrow{w}|\] with equality if and only if there exists a scalar $t$ such that $\overrightarrow{v} = t \overrightarrow{w}$, or if one of the vectors is zero. This formulation comes in handy in linear algebra problems at intermediate and olympiad problems.

The full Cauchy-Schwarz Inequality is written in terms of abstract vector spaces. Under this formulation, the elementary algebraic, linear algebraic, and calculus formulations are different cases of the general inequality.


Here is a list of proofs of Cauchy-Schwarz.

Consider the vectors $\mathbf{a} = \langle a_1, \ldots a_n \rangle$ and ${} \mathbf{b} = \langle b_1, \ldots b_n \rangle$. If $\theta$ is the angle formed by $\mathbf{a}$ and $\mathbf{b}$, then the left-hand side of the inequality is equal to the square of the dot product of $\mathbf{a}$ and $\mathbf{b}$, or $(\mathbf{a} \cdot \mathbf{b})^2 = a^2 b^2 (\cos\theta) ^2$ .The right hand side of the inequality is equal to $\left( ||\mathbf{a}|| * ||\mathbf{b}|| \right)^2  =  a^2b^2$. The inequality then follows from $|\cos\theta | \le 1$, with equality when one of $\mathbf{a,b}$ is a multiple of the other, as desired.


Complex Form

The inequality sometimes appears in the following form.

Let $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$ be complex numbers. Then \[\left| \sum_{i=1}^na_ib_i \right|^2 \le \left(\sum_{i=1}^{n}|a_i^2| \right) \left( \sum_{i=1}^n |b_i^2| \right)\] This appears to be more powerful, but it follows from \[\left| \sum_{i=1}^n a_ib_i \right| ^2 \le \left( \sum_{i=1}^n |a_i| \cdot |b_i| \right)^2 \le \left(\sum_{i=1}^n |a_i^2| \right) \left( \sum_{i=1}^n |b_i^2| \right)\]

General Form

Let $V$ be a vector space, and let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be an inner product. Then for any $\mathbf{a,b} \in V$, \[\langle \mathbf{a,b} \rangle^2 \le \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle ,\] with equality if and only if there exist constants $\mu, \lambda$ not both zero such that $\mu\mathbf{a} = \lambda\mathbf{b}$.

Proof 1

Consider the polynomial of $t$ \[\langle t\mathbf{a + b}, t\mathbf{a + b} \rangle = t^2\langle \mathbf{a,a} \rangle + 2t\langle \mathbf{a,b} \rangle + \langle \mathbf{b,b} \rangle .\] This must always be greater than or equal to zero, so it must have a non-positive discriminant, i.e., $\langle \mathbf{a,b} \rangle^2$ must be less than or equal to $\langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle$, with equality when $\mathbf{a = 0}$ or when there exists some scalar $-t$ such that $-t\mathbf{a} = \mathbf{b}$, as desired.

Proof 2

We consider \[\langle \mathbf{a-b, a-b} \rangle = \langle \mathbf{a,a} \rangle + \langle \mathbf{b,b} \rangle - 2 \langle \mathbf{a,b} \rangle .\] Since this is always greater than or equal to zero, we have \[\langle \mathbf{a,b} \rangle \le \frac{1}{2} \langle \mathbf{a,a} \rangle + \frac{1}{2} \langle \mathbf{b,b} \rangle .\] Now, if either $\mathbf{a}$ or $\mathbf{b}$ is equal to $\mathbf{0}$, then $\langle \mathbf{a,b} \rangle^2 = \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle = 0$. Otherwise, we may normalize so that $\langle \mathbf {a,a} \rangle = \langle \mathbf{b,b} \rangle = 1$, and we have \[\langle \mathbf{a,b} \rangle \le 1 = \langle \mathbf{a,a} \rangle^{1/2} \langle \mathbf{b,b} \rangle^{1/2} ,\] with equality when $\mathbf{a}$ and $\mathbf{b}$ may be scaled to each other, as desired.

Proof 3

Consider $a-\lambda b$ for some scalar $\lambda$. Then: $0\le||a-\lambda b||^2$ (by the Trivial Inequality) $=\langle a-\lambda b,a-\lambda b\rangle$ $=\langle a,a\rangle-2\lambda\langle a,b\rangle+\lambda^2\langle y,y\rangle$ $=||a||^2-2\lambda\langle a,b\rangle+\lambda^2||b||^2$. Now, let $\lambda=\frac{\langle a,b\rangle}{||b||^2}$. Then, we have: $0\le||a||^2-\frac{\langle a,b\rangle|^2}{||b||^2}$ $\implies\langle a,b\rangle|^2\le||a||^2||b||^2=\langle a,a\rangle\cdot\langle b,b\rangle$. $\square$



  • Consider the function $f(x)=\frac{(x+k)^2}{x^2+1},x\in (-\infty,\infty)$, where $k$ is a positive integer. Show that $f(x)\le k^2+1$. (Source)
  • (APMO 1991 #3) Let $a_1$, $a_2$, $\cdots$, $a_n$, $b_1$, $b_2$, $\cdots$, $b_n$ be positive real numbers such that $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$. Show that

\[\frac {a_1^2}{a_1 + b_1} + \frac {a_2^2}{a_2 + b_2} + \cdots + \frac {a_n^2}{a_n + b_n} \geq \frac {a_1 + a_2 + \cdots + a_n}{2}\]


  • Let $ABC$ be a triangle such that

\[\left( \cot \frac{A}{2} \right)^2 + \left( 2 \cot \frac{B}{2} \right)^2 + \left( 3 \cot \frac{C}{2} \right)^2 = \left( \frac{6s}{7r} \right)^2 ,\] where $s$ and $r$ denote its semiperimeter and inradius, respectively. Prove that triangle $ABC$ is similar to a triangle $T$ whose side lengths are all positive integers with no common divisor and determine those integers. (Source)


  • $P$ is a point inside a given triangle $ABC$. $D, E, F$ are the feet of the perpendiculars from $P$ to the lines $BC, CA, AB$, respectively. Find all $P$ for which

\[\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}\] is least.


Other Resources


Invalid username
Login to AoPS