Search results

  • ...>\bar a</math> to be <math>a^2\equiv \bar a\bmod p</math> and <math>\hat i=2pi+\bar i</math>. Then, we show that the integers <math>\hat i</math> does the
    2 KB (443 words) - 12:08, 17 August 2011
  • draw((0,0)--(cos(2pi/10),sin(2pi/10))); label("$\tan{2x}$",(cos(2pi/10),sin(2pi/10)),NE);
    3 KB (493 words) - 17:16, 4 June 2021
  • C = (1+(1-cos(2pi/9))*cos(2pi/9), (1-cos(2pi/9))*sin(2pi/9)); D = (-(1-cos(2pi/9))*cos(2pi/9), (1-cos(2pi/9))*sin(2pi/9));
    5 KB (871 words) - 17:59, 10 May 2023
  • surface base = surface(g,(0,0),(2pi,Brad),80,2);
    13 KB (2,066 words) - 13:08, 1 November 2022
  • surface base = surface(g,(0,0),(2pi,Brad),80,2);
    13 KB (2,011 words) - 20:54, 8 November 2022
  • surface base = surface(g,(0,0),(2pi,Brad),80,2);
    6 KB (1,060 words) - 18:15, 11 August 2023
  • surface base = surface(g,(0,0),(2pi,Brad),80,2);
    5 KB (797 words) - 19:08, 20 October 2024
  • ...ir(degrees(-5pi/12)); pair B = dir(degrees(2pi/12)); pair C = dir(degrees(-2pi/12)); pair P = extension(A, B, C, D); draw(circ); draw(A--P--D); label('$A$
    2 KB (318 words) - 16:12, 7 June 2019
  • surface s=surface(f,(0,0),(pi,2pi),70,Spline);
    7 KB (1,006 words) - 08:58, 18 July 2024
  • <cmath></cmath>D) <math>(2pi)^2</math> equals <math>4pi^2</math>, which is irrational
    585 bytes (85 words) - 10:47, 5 November 2019
  • draw(graph(g,0,2pi),blue,"$y=\cos\left(\frac x2\right)$"); A[0] = (2pi,0);
    4 KB (615 words) - 03:07, 8 July 2022
  • draw(graph(Sin,0, 2pi),red,"$3\sin{x} -1 $"); draw(graph(Cos,0, 2pi),blue,"$5\cos{3x}$");
    2 KB (250 words) - 17:57, 19 September 2023
  • 0,pi/4,pi/3,pi/2,2pi/3,3pi/4,pi,4pi/3,5pi/4,3pi/2,7pi/4,5pi/3,2pi
    6 KB (1,079 words) - 03:54, 9 November 2024