Search results
Create the page "625" on this wiki! See also the search results found.
- ...02 603 604 605 606 608 609 610 611 612 614 615 616 618 620 621 622 623 624 625 626 627 628 629 630 632 633 634 635 636 637 638 639 640 642 644 645 646 6486 KB (350 words) - 11:58, 26 September 2023
- ...ath>5</math>. As we list out the powers of 5, it is clear that <math>5^{4}=625</math> is less than 2006 and <math>5^{5}=3125</math> is greater. Therefore <math>5^4 = 625</math>. Therefore the power of <math>5</math> that divides <math>a!</math>5 KB (881 words) - 14:52, 23 June 2021
- ...\left(\frac{1}{125},\frac{1}{25}\right) \cup \left(\frac{1}{3125},\frac{1}{625}\right) \cup \cdots</cmath>2 KB (303 words) - 17:43, 16 October 2024
- ...s a distance <math>\sqrt{(-375-125)^2+(-375-0)^2}=125\sqrt{4^2+3^2}=\boxed{625}</math>.2 KB (268 words) - 21:20, 23 March 2023
- ...math>. Our probability is <math>\frac{m}{n} = \frac{144}{10000} = \frac{9}{625}</math>, and <math>m + n = \boxed{634}</math>.822 bytes (108 words) - 21:21, 6 November 2016
- <cmath>=\sqrt{1-\frac{625}{13^2\cdot313}}</cmath> <cmath>=\frac{\sqrt{13^2\cdot313-625}}{13\sqrt{313}}</cmath>7 KB (1,086 words) - 07:16, 29 July 2023
- ...>, <math>AS = y</math>. The Pythagorean Theorem gives us <math>x^2 + y^2 = 625\quad \mathrm{(1)}</math>. Ptolemy’s Theorem gives us <math>25 \cdot OA = <cmath>\begin{eqnarray*}x^2 + \left(40-\frac 43x\right)^2 &=& 625\8 KB (1,270 words) - 22:36, 27 August 2023
- ...\rfloor + \left\lfloor \frac{m}{125} \right\rfloor + \left\lfloor \frac{m}{625} \right\rfloor + \left\lfloor \frac{m}{3125} \right\rfloor + \cdots</math>.2 KB (358 words) - 00:54, 2 October 2020
- It follows that <math>\sin \theta = \frac{527} {625}</math>. Thus, ...D]=\frac{1} {2} (12.5) \left(\frac{5\sqrt{11}} {2}\right)\left(\frac{527} {625}\right)=\frac{527\sqrt{11}} {40}</math>.5 KB (772 words) - 18:47, 1 August 2023
- ...ABF]}=\left(\frac{AD}{AB}\right)^2=\left(\frac{19}{25}\right)^2=\frac{361}{625}</cmath> <cmath>\frac{[ADE]}{[DEFB]}=\frac{361}{625-361}=\frac{361}{364}</cmath>6 KB (897 words) - 16:55, 1 December 2024
- ...}=\frac{800y^4}{625}+\frac{1800y^4}{625}+\frac{1152y^4}{625}-\frac{100y^2}{625}</cmath>6 KB (994 words) - 12:40, 3 December 2024
- ...} = \frac{25}{4} \implies 25 + x^2 = \frac{625}{16} \implies 400 + 16x^2 = 625 \implies 16x^2 = 225 \implies x = \frac{15}{4}</math>. Now, remember <math>6 KB (930 words) - 21:14, 18 January 2024
- ...ath>x^k</math>, which is <math> \sum^{4}_{k=1} [(k+1)^k-k^k]=2-1+9-4+64-27+625-256=\boxed{412}</math>.4 KB (595 words) - 15:38, 15 February 2021
- ...5}\right)^2} = \frac{468}{625} + \frac 35\cdot\frac {44}{125} = \frac{600}{625} = \frac{24}{25}4 KB (680 words) - 12:49, 23 December 2023
- ...a_1</math> and <math>\omega_2</math> with radii <math>961</math> and <math>625</math>, respectively, intersect at distinct points <math>A</math> and <math12 KB (2,125 words) - 07:38, 23 May 2024
- real c(real x) {return ((x-30)^2 * (x-40)^2) * 8/625;}16 KB (2,292 words) - 12:36, 19 February 2020
- <cmath>441, 484, 529,576,625,676,729,784,841,900,961</cmath>We see that <math>484</math> and <math>784</ ...see that <math>a=22</math> and <math>b=28</math> works, as <math>484+150-9=625=25^2</math>, so <math>\frac{784-484}{484} \approx \boxed{\textbf{(E) } 62\%3 KB (547 words) - 14:39, 1 December 2024
- ...>E</math>, <math>B</math>, and <math>D</math>, giving a total of <math>5^4=625</math> ways. However, vertex <math>D</math> cannot be the same color as ver14 KB (2,425 words) - 15:56, 7 September 2024
- <math>\text{(A)}\ 250 \qquad \text{(B)}\ 500 \qquad \text{(C)}\ 625 \qquad \text{(D)}\ 750 \qquad \text{(E)}\ 1000</math>15 KB (2,102 words) - 04:24, 6 January 2025
- ...ath>3</math>-digit powers of <math>5</math> are <math>125</math> and <math>625</math>, so space <math>2</math> is filled with a <math>2</math>.1 KB (153 words) - 17:34, 28 March 2023