2024 AMC 10A Problems/Problem 5

Revision as of 15:42, 8 November 2024 by MRENTHUSIASM (talk | contribs)

Problem

What is the least value of $n$ such that $n!$ is a multiple of $2024$?

$\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253$

Solution

Note that $2024=2^3\cdot11\cdot23.$ Since $23!$ is a multiple of $2^3, 11,$ and $23,$ and $\gcd(2^3,11,23)=1,$ we conclude that $23!$ is a multiple of $2024.$ Therefore, we have $n=\boxed{\textbf{(D) } 23}.$

~MRENTHUSIASM

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png