2024 AMC 10A Problems/Problem 7

Revision as of 15:48, 8 November 2024 by Eevee9406 (talk | contribs)

Problem

The product of three integers is 60. What is the least possible positive sum of the three integers?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }13$

Solution

We notice that the optimal solution involves two negative numbers and a positive number. Thus we may split $60$ into three factors and choose negativity. We notice that $10\cdot6\cdot1=10\cdot(-6)\cdot(-1)=60$, and trying other combinations does not yield lesser results so the answer is $10-6-1=\boxed{(B)3}$.

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png