Difference between revisions of "2018 AMC 8 Problems/Problem 20"

m
m (Solution 2)
Line 24: Line 24:
  
 
==Solution 2==
 
==Solution 2==
We can extend it into a parallelogram(probably didn't spell it correctly), so it would equal <math>3a /cdot 3b</math>. The smaller parallelogram is 1 a times 2 b. The smaller parallelogram is <math>/frac{2}{9}</math> of the larger parallelogram, so the answer would be <math>/frac{2}{9} /cdot 2</math>, since the triangle is <math>/frac{1}{2}</math> of the parallelogram, so the answer is <math>[A]/frac{4}{9}</math>
+
We can extend it into a parallelogram, so it would equal <math>3a \cdot 3b</math>. The smaller parallelogram is 1 a times 2 b. The smaller parallelogram is <math>\frac{2}{9}</math> of the larger parallelogram, so the answer would be <math>\frac{2}{9} \cdot 2</math>, since the triangle is <math>\frac{1}{2}</math> of the parallelogram, so the answer is <math>[A]\frac{4}{9}</math>
  
  

Revision as of 23:39, 20 January 2019

Problem 20

In $\triangle ABC,$ a point $E$ is on $\overline{AB}$ with $AE=1$ and $EB=2.$ Point $D$ is on $\overline{AC}$ so that $\overline{DE} \parallel \overline{BC}$ and point $F$ is on $\overline{BC}$ so that $\overline{EF} \parallel \overline{AC}.$ What is the ratio of the area of $CDEF$ to the area of $\triangle ABC?$

[asy] size(7cm); pair A,B,C,DD,EE,FF; A = (0,0); B = (3,0); C = (0.5,2.5); EE = (1,0); DD = intersectionpoint(A--C,EE--EE+(C-B)); FF = intersectionpoint(B--C,EE--EE+(C-A)); draw(A--B--C--A--DD--EE--FF,black+1bp); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",DD,W); label("$E$",EE,S); label("$F$",FF,NE); label("$1$",(A+EE)/2,S); label("$2$",(EE+B)/2,S); [/asy]

$\textbf{(A) } \frac{4}{9} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{5}{9} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{2}{3}$

Solution

By similar triangles, we have $[ADE] = \frac{1}{9}[ABC]$. Similarly, we see that $[BEF] = \frac{4}{9}[ABC].$ Using this information, we get \[[ACFE] = \frac{5}{9}[ABC].\] Then, since $[ADE] = \frac{1}{9}[ABC]$, it follows that the $[CDEF] = \frac{4}{9}[ABC]$. Thus, the answer would be $\boxed {A}.$

Sidenote: $[ABC]$ denotes the area of triangle $ABC$. Similarly, $[ABCD]$ denotes the area of figure $ABCD$.

Solution 2

We can extend it into a parallelogram, so it would equal $3a \cdot 3b$. The smaller parallelogram is 1 a times 2 b. The smaller parallelogram is $\frac{2}{9}$ of the larger parallelogram, so the answer would be $\frac{2}{9} \cdot 2$, since the triangle is $\frac{1}{2}$ of the parallelogram, so the answer is $[A]\frac{4}{9}$


By babyzombievillager

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png