Difference between revisions of "2019 AIME I Problems/Problem 15"
(→Solution 1) |
|||
Line 34: | Line 34: | ||
Let <math>O_1</math> and <math>O_2</math> be the centers of <math>\omega_1</math> and <math>\omega_2</math>, respectively. There is a homothety at <math>A</math> sending <math>\omega</math> to <math>\omega_1</math> that sends <math>B</math> to <math>P</math> and <math>O</math> to <math>O_1</math>, so <math>\overline{OO_2}\parallel\overline{O_1P}</math>. Similarly, <math>\overline{OO_1}\parallel\overline{O_2P}</math>, so <math>OO_1PO_2</math> is a parallelogram. Moreover, <cmath>\angle O_1QO_2=\angle O_1PO_2=\angle O_1OO_2,</cmath>whence <math>OO_1O_2Q</math> is cyclic. However, <cmath>OO_1=O_2P=O_2Q,</cmath>so <math>OO_1O_2Q</math> is an isosceles trapezoid. Since <math>\overline{O_1O_2}\perp\overline{XY}</math>, <math>\overline{OQ}\perp\overline{XY}</math>, so <math>Q</math> is the midpoint of <math>\overline{XY}</math>. | Let <math>O_1</math> and <math>O_2</math> be the centers of <math>\omega_1</math> and <math>\omega_2</math>, respectively. There is a homothety at <math>A</math> sending <math>\omega</math> to <math>\omega_1</math> that sends <math>B</math> to <math>P</math> and <math>O</math> to <math>O_1</math>, so <math>\overline{OO_2}\parallel\overline{O_1P}</math>. Similarly, <math>\overline{OO_1}\parallel\overline{O_2P}</math>, so <math>OO_1PO_2</math> is a parallelogram. Moreover, <cmath>\angle O_1QO_2=\angle O_1PO_2=\angle O_1OO_2,</cmath>whence <math>OO_1O_2Q</math> is cyclic. However, <cmath>OO_1=O_2P=O_2Q,</cmath>so <math>OO_1O_2Q</math> is an isosceles trapezoid. Since <math>\overline{O_1O_2}\perp\overline{XY}</math>, <math>\overline{OQ}\perp\overline{XY}</math>, so <math>Q</math> is the midpoint of <math>\overline{XY}</math>. | ||
− | By Power of a Point, <math>PX\cdot PY=PA\cdot PB=15</math>. Since <math>PX+PY=XY=11</math>, <cmath>XP=\frac{11-\sqrt{61}}2\implies PQ=\frac{\sqrt{61}}2\implies PQ^2=\frac{61}4,</cmath>and the requested sum is <math>61+4=\boxed{065}</math>. | + | By Power of a Point, <math>PX\cdot PY=PA\cdot PB=15</math>. Since <math>PX+PY=XY=11</math> and <math>XQ=11/2</math>, <cmath>XP=\frac{11-\sqrt{61}}2\implies PQ=XQ-XP=\frac{\sqrt{61}}2\implies PQ^2=\frac{61}4,</cmath> |
+ | and the requested sum is <math>61+4=\boxed{065}</math>. | ||
(Solution by TheUltimate123) | (Solution by TheUltimate123) | ||
==Solution 2== | ==Solution 2== | ||
+ | |||
+ | Let the tangents to <math>\omega</math> at <math>A</math> and <math>B</math> intersect at <math>R</math>. Then, since <math>RA^2=RB^2</math>, <math>R</math> lies on the radical axis of <math>\omega_1</math> and <math>\omega_2</math>, which is <math>\overline{PQ}</math>. It follows that <cmath>-1=(A,B;X,Y)\stackrel{A}{=}(R,P;X,Y).</cmath> | ||
+ | Let <math>Q'</math> denote the midpoint of <math>\overline{XY}</math>. By the Midpoint of Harmonic Bundles Lemma, <cmath>RP\cdot RQ'=RX\cdot RY=RA^2=RP\cdot RQ,</cmath> | ||
+ | whence <math>Q=Q'</math>. Like above, <math>XP=\frac{11-\sqrt{61}}2</math>. Since <math>XQ=\frac{11}2</math>, we establish that <math>PQ=\frac{\sqrt{61}}2</math>, from which <math>PQ^2=\frac{61}4</math>, and the requested sum is <math>61+4=\boxed{065}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
Firstly we need to notice that <math>Q</math> is the middle point of <math>XY</math>. Assume the center of circle <math>w, w_1, w_2</math> are <math>O, O_1, O_2</math>, respectively. Then <math>A, O_2, O</math> are collinear and <math>O, O_1, B</math> are collinear. Link <math>O_1P, O_2P, O_1Q, O_2Q</math>. Notice that, <math>\angle B=\angle A=\angle APO_2=\angle BPO_1</math>. As a result, <math>PO_1\parallel O_2O</math> and <math>QO_1\parallel O_2P</math>. So we have parallelogram <math>PO_2O_1O</math>. So <math>\angle O_2PO_1=\angle O</math> Notice that, <math>O_1O_2\bot PQ</math> and <math>O_1O_2</math> divide <math>PQ</math> into two equal length pieces, So we have <math>\angle O_2PO_1=\angle O_2QO_1=\angle O</math>. As a result, <math>O_2, Q, O, O_1,</math> lie on one circle. So <math>\angle OQO_1=\angle OO_2O_1=\angle O_2O_1P</math>. Notice that <math>\angle O_1PQ+\angle O_2O_1P=90^{\circ}</math>, we have <math>\angle OQP=90^{\circ}</math>. As a result, <math>OQ\bot PQ</math>. So <math>Q</math> is the middle point of <math>XY</math>. | Firstly we need to notice that <math>Q</math> is the middle point of <math>XY</math>. Assume the center of circle <math>w, w_1, w_2</math> are <math>O, O_1, O_2</math>, respectively. Then <math>A, O_2, O</math> are collinear and <math>O, O_1, B</math> are collinear. Link <math>O_1P, O_2P, O_1Q, O_2Q</math>. Notice that, <math>\angle B=\angle A=\angle APO_2=\angle BPO_1</math>. As a result, <math>PO_1\parallel O_2O</math> and <math>QO_1\parallel O_2P</math>. So we have parallelogram <math>PO_2O_1O</math>. So <math>\angle O_2PO_1=\angle O</math> Notice that, <math>O_1O_2\bot PQ</math> and <math>O_1O_2</math> divide <math>PQ</math> into two equal length pieces, So we have <math>\angle O_2PO_1=\angle O_2QO_1=\angle O</math>. As a result, <math>O_2, Q, O, O_1,</math> lie on one circle. So <math>\angle OQO_1=\angle OO_2O_1=\angle O_2O_1P</math>. Notice that <math>\angle O_1PQ+\angle O_2O_1P=90^{\circ}</math>, we have <math>\angle OQP=90^{\circ}</math>. As a result, <math>OQ\bot PQ</math>. So <math>Q</math> is the middle point of <math>XY</math>. |
Revision as of 14:07, 16 March 2019
Contents
[hide]Problem 15
Let be a chord of a circle
, and let
be a point on the chord
. Circle
passes through
and
and is internally tangent to
. Circle
passes through
and
and is internally tangent to
. Circles
and
intersect at points
and
. Line
intersects
at
and
. Assume that
,
,
, and
, where
and
are relatively prime positive integers. Find
.
Solution 1
Let
and
be the centers of
and
, respectively. There is a homothety at
sending
to
that sends
to
and
to
, so
. Similarly,
, so
is a parallelogram. Moreover,
whence
is cyclic. However,
so
is an isosceles trapezoid. Since
,
, so
is the midpoint of
.
By Power of a Point, . Since
and
,
and the requested sum is
.
(Solution by TheUltimate123)
Solution 2
Let the tangents to at
and
intersect at
. Then, since
,
lies on the radical axis of
and
, which is
. It follows that
Let
denote the midpoint of
. By the Midpoint of Harmonic Bundles Lemma,
whence
. Like above,
. Since
, we establish that
, from which
, and the requested sum is
.
Solution 3
Firstly we need to notice that is the middle point of
. Assume the center of circle
are
, respectively. Then
are collinear and
are collinear. Link
. Notice that,
. As a result,
and
. So we have parallelogram
. So
Notice that,
and
divide
into two equal length pieces, So we have
. As a result,
lie on one circle. So
. Notice that
, we have
. As a result,
. So
is the middle point of
.
Back to our problem. Assume ,
and
. Then we have
, that is,
. Also,
. Solve these above, we have
. As a result, we hav e
. So, we have
. As a result, our answer is
.
Solution By BladeRunnerAUG (Fanyuchen20020715).
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.