Difference between revisions of "2019 AIME I Problems/Problem 3"
Epicskills (talk | contribs) (→Solution 2) |
Epicskills (talk | contribs) (→Solution 2) |
||
Line 13: | Line 13: | ||
You can also go counterclockwise order, as long as you find the absolute value of the answer. | You can also go counterclockwise order, as long as you find the absolute value of the answer. | ||
− | + | . | |
==Solution 3== | ==Solution 3== |
Revision as of 12:30, 4 July 2019
Contents
[hide]Problem 3
In , , , and . Points and lie on , points and lie on , and points and lie on , with . Find the area of hexagon .
Solution 1
We know the area of the hexagon to be . Since , we know that is a right triangle. Thus the area of is . Another way to compute the area is Then the area of . Preceding in a similar fashion for , the area of is . Since , the area of . Thus our desired answer is
Solution 2
Let be the origin. Noticing that the triangle is a 3-4-5 right triangle, we can see that , and . Using the shoelace theorem, the area is . Shoelace theorem:Suppose the polygon has vertices , , ... , , listed in clockwise order. Then the area of is
You can also go counterclockwise order, as long as you find the absolute value of the answer.
.
Solution 3
Note that has area and is a 3-4-5 right triangle. Then, by similar triangles, the altitude from to has length 3 and the altitude from to has length 4, so , meaning that . -Stormersyle
Solution 4
Knowing that has area 150 and is a 3-4-5 triangle, we can find the area of the smaller triangles , , and and subtract them from to obtain our answer. First off, we know has area since it is a right triangle. To the find the areas of and , we can use Law of Cosines () to find the lengths of and , respectively. Computing gives and . Now, using Heron's Formula, we find and . Adding these and subtracting from , we get -Starsher
Video Solution
https://www.youtube.com/watch?v=4jOfXNiQ6WM
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.