Difference between revisions of "2002 AMC 10B Problems/Problem 23"

m (Solution 3)
(Solution 1)
Line 7: Line 7:
 
== Solution 1 ==
 
== Solution 1 ==
  
First of all, write <math>a_3</math> and <math>a_4</math> in terms of <math>a_2.</math>
+
When <math>m=1</math>, <math>a_{n+1}=1+a_n+n</math>. Hence,
<cmath>\begin{align*} a_3 &= a_{1+2} = 1 + a_2 + 2 = a_2 + 3\
+
<cmath>a_{2}=1+a_1+2</cmath>
a_4 &= a_{2+2} = a_2 + a_2 + 4 = 2a_2 + 4 \end{align*}</cmath>
+
<cmath>a_{3}=1+a_2+3</cmath>
 
+
<cmath>a_{4}=1+a_3+4</cmath>
<math>a_6</math> can be represented by <math>a_2</math> in <math>2</math> different ways.
+
<math>\dots</math>
 
+
<cmath>a_{12}=1+a_{11}+11</cmath>
<cmath>\begin{align*} a_{2+4} &= a_2 + a_4 + 8 = a_2 + 2a_2 + 4 + 8 = 3a_2 + 12\
+
Adding these equations up, we have that <math>a_12=12+(1+2+3+...+11)=\boxed{78}</math>
a_{3+3} &= 2a_3 + 9 = 6 + 2a_2 + 9 = 2a_2 + 15\
 
\end{align*}</cmath>
 
 
 
Since both are equal to <math>a_6,</math> you can set them equal to each other.
 
 
 
<cmath>\begin{align*} 3a_2 + 12 &= 2a_2 + 15\
 
a_2 &= 3 \end{align*}</cmath>
 
 
 
Substitute the value of <math>a_2</math> back into <math>a_6,</math> and substitute that into <math>a_{12}.</math>
 
 
 
<cmath>a_6 = 2a_2+15 = 6+15 = 21</cmath>
 
<cmath>a_{12} = a_{6+6} = a_6+a_6+36 = 21+21+36 = \boxed{\mathrm{(D) \ } 78}</cmath>
 
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 21:31, 18 July 2019

Problem 23

Let $\{a_k\}$ be a sequence of integers such that $a_1=1$ and $a_{m+n}=a_m+a_n+mn,$ for all positive integers $m$ and $n.$ Then $a_{12}$ is

$\mathrm{(A) \ } 45\qquad \mathrm{(B) \ } 56\qquad \mathrm{(C) \ } 67\qquad \mathrm{(D) \ } 78\qquad \mathrm{(E) \ } 89$

Solution 1

When $m=1$, $a_{n+1}=1+a_n+n$. Hence, \[a_{2}=1+a_1+2\] \[a_{3}=1+a_2+3\] \[a_{4}=1+a_3+4\] $\dots$ \[a_{12}=1+a_{11}+11\] Adding these equations up, we have that $a_12=12+(1+2+3+...+11)=\boxed{78}$

Solution 2

Substituting $n=1$ into $a_{m+n}=a_m+a_n+mn$: $a_{m+1}=a_m+a_{1}+m$. Since $a_1 = 1$, $a_{m+1}=a_m+m+1$. Therefore, $a_m = a_{m-1} + m, a_{m-1}=a_{m-2}+(m-1), a_{m-2} = a_{m-3} + (m-2)$, and so on until $a_2 = a_1 + 2$. Adding the Left Hand Sides of all of these equations gives $a_m + a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_2$; adding the Right Hand Sides of these equations gives $(a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_1) + (m + (m-1) + (m-2) + \cdots + 2)$. These two expressions must be equal; hence $a_m + a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_2 = (a_{m-1} + a_{m-2} + a_{m-3} + \cdots + a_1) + (m + (m-1) + (m-2) + \cdots + 2)$ and $a_m = a_1 + (m + (m-1) + (m-2) + \cdots + 2)$. Substituting $a_1 = 1$: $a_m = 1 + (m + (m-1) + (m-2) + \cdots + 2) = 1+2+3+4+ \cdots +m = \frac{(m+1)(m)}{2}$. Thus we have a general formula for $a_m$ and substituting $m=12$: $a_{12} = \frac{(13)(12)}{2} = (13)(6) = \boxed{\mathrm{(D) \ } 78}$.

Solution 3

We can literally just plug stuff in. No prerequisite is actually said in the sequence. Since $a_{m+n} = a_m+a_n +mn$, we know $a_2=a_1+a_1+1\cdot1=1+1+1=3$. After this, we can use $a_2$ to find $a_4$. $a_4=a_2+a_2+2\cdot 2 = 3+3+4 = 10$. Now, we can use $a_2$ and $a_4$ to find $a_6$, or $a_6=a_4+a_2+4\cdot 2 = 10+3+8=21$. Lastly, we can use $a_6$ to find $a_{12}$. $a_{12} = a_6+a_6+6\cdot 6 = 21+21+36= \boxed{(D) 78}$

Additional Comment

This is also the formula for the triangular numbers $T_n=1+2+3+...+n$, as seen in Solution 2

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png