Difference between revisions of "2016 AMC 12B Problems/Problem 3"

(Problem)
(Solution)
Line 5: Line 5:
 
<math>\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048</math>
 
<math>\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048</math>
  
==Solution==
+
==Solution 1==
 
By: dragonfly
 
By: dragonfly
  
Line 21: Line 21:
  
 
and finally we get <math>\boxed{\textbf{(D)}\ 4032}</math>
 
and finally we get <math>\boxed{\textbf{(D)}\ 4032}</math>
 +
 +
==Solution 2==
 +
 +
Consider <math>x</math> is negative.
 +
 +
We replace all instances of <math>x</math> with <math>|x|</math>:
 +
 +
<math>\bigg|</math> <math>||x|+|x||-|x|</math> <math>\bigg|</math> <math>+|x|</math>
 +
 +
<math>=</math> <math>\bigg|</math> <math>|2x|-|x|</math> <math>\bigg|</math> <math>+|x|</math>
 +
 +
<math>=</math> <math>|x|</math> <math>+|x|</math>
 +
 +
<math>=|2x|
 +
 +
</math>=4032 \boxed{\textbf{(D)}\}$
 +
 +
omerselim1
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2016|ab=B|num-b=2|num-a=4}}
 
{{AMC12 box|year=2016|ab=B|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:43, 5 November 2019

Problem

Let $x=-2016$. What is the value of $\bigg|$ $||x|-x|-|x|$ $\bigg|$ $-x$?

$\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048$

Solution 1

By: dragonfly

First of all, lets plug in all of the $x$'s into the equation.

$\bigg|$ $||-2016|-(-2016)|-|-2016|$ $\bigg|$ $-(-2016)$

Then we simplify to get

$\bigg|$ $|2016+2016|-2016$ $\bigg|$ $+2016$

which simplifies into

$\bigg|$ $2016$ $\bigg|$ $+2016$

and finally we get $\boxed{\textbf{(D)}\ 4032}$

Solution 2

Consider $x$ is negative.

We replace all instances of $x$ with $|x|$:

$\bigg|$ $||x|+|x||-|x|$ $\bigg|$ $+|x|$

$=$ $\bigg|$ $|2x|-|x|$ $\bigg|$ $+|x|$

$=$ $|x|$ $+|x|$

$=|2x|$=4032 \boxed{\textbf{(D)}\}$

omerselim1

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png