Difference between revisions of "2015 AIME II Problems/Problem 15"
(→Solution 5 (Easy computation)) |
(A (hopefully) good trig solution) |
||
Line 19: | Line 19: | ||
==Hint== | ==Hint== | ||
− | + | <math>[ABC] = \frac{1}{2}ab \sin C</math> is your friend for a quick solve. If you know about homotheties, go ahead, but you'll still need to do quite a bit of computation. If you're completely lost and you have a lot of time left in your mocking of this AIME, go ahead and coordinate bash. | |
==Solution 1== | ==Solution 1== | ||
+ | Let <math>M</math> be the intersection of <math>\overline{BC}</math> and the common internal tangent of <math>\mathcal P</math> and <math>\mathcal Q.</math> We claim that <math>M</math> is the circumcenter of right <math>\triangle{ABC}.</math> Indeed, we have <math>AM = BM</math> and <math>BM = CM</math> by equal tangents to circles, and since <math>BM = CM, M</math> is the midpoint of <math>\overline{BC},</math> implying that <math>\angle{BAC} = 90.</math> Now draw <math>\overline{PA}, \overline{PB}, \overline{PM},</math> where <math>P</math> is the center of circle <math>\mathcal P.</math> Quadrilateral <math>PAMB</math> is cyclic, and by Pythagorean Theorem <math>PM = \sqrt{5},</math> so by Ptolemy on <math>PAMB</math> we have <cmath>AB \sqrt{5} = 2 \cdot 1 + 2 \cdot 1 = 4 \iff AB = \dfrac{4 \sqrt{5}}{5}.</cmath> Do the same thing on cyclic quadrilateral <math>QAMC</math> (where <math>Q</math> is the center of circle <math>\mathcal Q</math> and get <math>AB = \frac{8 \sqrt{5}}{5}.</math> | ||
+ | |||
+ | Let <math>\angle A = \angle{DAB}.</math> By Law of Sines, <math>BD = 2R \sin A = 2 \sin A.</math> Note that <math>\angle{D} = \angle{ABC}</math> from inscribed angles, so | ||
+ | <cmath>\begin{align*} | ||
+ | [ABD] &= \dfrac{1}{2} BD \cdot AB \cdot \sin{\angle B} \ | ||
+ | &= \dfrac{1}{2} \cdot \dfrac{4 \sqrt{5}}{5} \cdot 2 \sin A \sin{\left(180 - \angle A - \angle D\right)} \ | ||
+ | &= \dfrac{4 \sqrt{5}}{5} \cdot \sin A \cdot \sin{\left(\angle A + \angle D\right)} \ | ||
+ | &= \dfrac{4 \sqrt{5}}{5} \cdot \sin A \cdot \left(\sin A \cos D + \cos A \sin D\right) \ | ||
+ | &= \dfrac{4 \sqrt{5}}{5} \cdot \sin A \cdot \left(\sin A \cos{\angle{ABC}} + \cos A \sin{\angle{ABC}}\right) \ | ||
+ | &= \dfrac{4 \sqrt{5}}{5} \cdot \sin A \cdot \left(\dfrac{\sqrt{5} \sin A}{5} + \dfrac{2 \sqrt{5} \cos A}{5}\right) \ | ||
+ | &= \dfrac{4}{5} \cdot \sin A \left(\sin A + 2 \cos A\right). | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Similarly, <math>\angle{EAC} = 90 - \angle A,</math> and by Law of Sines <math>CE = 8 \sin{\angle{EAC}} = 8 \cos A.</math> Note that <math>\angle{E} = \angle{ACB}</math> from inscribed angles, so | ||
+ | <cmath>\begin{align*} | ||
+ | [ACE] &= \dfrac{1}{2} AC \cdot CE \sin{\angle C} \ | ||
+ | &= \dfrac{1}{2} \cdot \dfrac{8 \sqrt{5}}{5} \cdot 8 \cos A \sin{\left[180 - \left(90 - \angle A\right) - \angle E\right]} \ | ||
+ | &= \dfrac{32 \sqrt{5}}{5} \cdot \cos A \sin{\left[\left(90 - \angle A\right) + \angle{ACB}\right]} \ | ||
+ | &= \dfrac{32 \sqrt{5}}{5} \cdot \cos A \left(\dfrac{2 \sqrt{5} \cos A}{5} + \dfrac{\sqrt{5} \sin A}{5}\right) \ | ||
+ | &= \dfrac{32}{5} \cdot \cos A \left(\sin A + 2 \cos A\right). | ||
+ | \end{align*}</cmath> | ||
+ | Setting the two areas equal, we get <cmath>\tan A = \frac{\sin A}{\cos A} = 8 \iff \sin A = \frac{8}{\sqrt{65}}, \cos A = \frac{1}{\sqrt{65}}</cmath> after Pythagorean Identity. Now plug back in and the common area is <math>\frac{64}{65} \iff \boxed{129}.</math> | ||
+ | |||
+ | ==Solution 2== | ||
<asy> | <asy> | ||
unitsize(35); | unitsize(35); | ||
Line 43: | Line 67: | ||
Then we can find the coordinates of <math>D</math> by finding the point <math>(x,y)</math> other than <math>A = (0,0)</math> where the circle <math>\mathcal{P}</math> intersects <math>\ell</math>. <math>\mathcal{P}</math> can be represented with the equation <math>(x + 1)^2 + y^2 = 1</math>, and substituting <math>y = -\frac{3}{2}x</math> into this equation yields <math>x = 0, -\frac{8}{13}</math> as solutions. Discarding <math>x = 0</math>, the <math>y</math>-coordinate of <math>D</math> is <math>-\frac{3}{2} \cdot -\frac{8}{13} = \frac{12}{13}</math>. The distance from <math>D</math> to <math>A</math> is then <math>\frac{4}{\sqrt{13}}.</math> The perpendicular distance from <math>B</math> to <math>AD</math> or the height of <math>\triangle{DBA}</math> is <math>\frac{|\frac{3}{2}\cdot\frac{-24}{15} + \frac{-12}{15} + 0|}{\sqrt{\frac{3}{2}^2 + 1}} = \frac{\frac{48}{15}}{\frac{\sqrt{13}}{2}} = \frac{32}{5\sqrt{13}}.</math> Finally, the common area is <math>\frac{1}{2}\left(\frac{32}{5\sqrt{13}} \cdot \frac{4}{\sqrt{13}}\right) = \frac{64}{65}</math>, and <math>m + n = 64 + 65 = \boxed{129}</math>. | Then we can find the coordinates of <math>D</math> by finding the point <math>(x,y)</math> other than <math>A = (0,0)</math> where the circle <math>\mathcal{P}</math> intersects <math>\ell</math>. <math>\mathcal{P}</math> can be represented with the equation <math>(x + 1)^2 + y^2 = 1</math>, and substituting <math>y = -\frac{3}{2}x</math> into this equation yields <math>x = 0, -\frac{8}{13}</math> as solutions. Discarding <math>x = 0</math>, the <math>y</math>-coordinate of <math>D</math> is <math>-\frac{3}{2} \cdot -\frac{8}{13} = \frac{12}{13}</math>. The distance from <math>D</math> to <math>A</math> is then <math>\frac{4}{\sqrt{13}}.</math> The perpendicular distance from <math>B</math> to <math>AD</math> or the height of <math>\triangle{DBA}</math> is <math>\frac{|\frac{3}{2}\cdot\frac{-24}{15} + \frac{-12}{15} + 0|}{\sqrt{\frac{3}{2}^2 + 1}} = \frac{\frac{48}{15}}{\frac{\sqrt{13}}{2}} = \frac{32}{5\sqrt{13}}.</math> Finally, the common area is <math>\frac{1}{2}\left(\frac{32}{5\sqrt{13}} \cdot \frac{4}{\sqrt{13}}\right) = \frac{64}{65}</math>, and <math>m + n = 64 + 65 = \boxed{129}</math>. | ||
− | ==Solution | + | ==Solution 3== |
By [[homothety]], we deduce that <math>AE = 4 AD</math>. (The proof can also be executed by similar triangles formed from dropping perpendiculars from the centers of <math>P</math> and <math>Q</math> to <math>l</math>.) Therefore, our equality of area condition, or the equality of base times height condition, reduces to the fact that the distance from <math>B</math> to <math>l</math> is four times that from <math>C</math> to <math>l</math>. Let the distance from <math>C</math> be <math>x</math> and the distance from <math>B</math> be <math>4x</math>. | By [[homothety]], we deduce that <math>AE = 4 AD</math>. (The proof can also be executed by similar triangles formed from dropping perpendiculars from the centers of <math>P</math> and <math>Q</math> to <math>l</math>.) Therefore, our equality of area condition, or the equality of base times height condition, reduces to the fact that the distance from <math>B</math> to <math>l</math> is four times that from <math>C</math> to <math>l</math>. Let the distance from <math>C</math> be <math>x</math> and the distance from <math>B</math> be <math>4x</math>. | ||
Line 63: | Line 87: | ||
Call the intersection of lines <math>l</math> and <math>BC</math> <math>E</math>.You can use similar triangles to find that the distance from <math>B</math> to <math>E</math> is four times the distance from <math>C</math> to <math>E</math>. Then draw a perpendicular from <math>A</math> to <math>BC</math> and call the point <math>F</math>. <math>AF = \frac{8}{5}</math> and <math>FE = FC + CE = \frac{16}{5} + \frac{4}{3} = \frac{68}{15}</math>, so by the Pythagorean Theorem, <math>AE = \dfrac{20\sqrt{13}}{5}</math>. You can now use similar triangles to find that <math>x = \dfrac{8}{5\sqrt{13}}</math> and continue on like in solution 2. | Call the intersection of lines <math>l</math> and <math>BC</math> <math>E</math>.You can use similar triangles to find that the distance from <math>B</math> to <math>E</math> is four times the distance from <math>C</math> to <math>E</math>. Then draw a perpendicular from <math>A</math> to <math>BC</math> and call the point <math>F</math>. <math>AF = \frac{8}{5}</math> and <math>FE = FC + CE = \frac{16}{5} + \frac{4}{3} = \frac{68}{15}</math>, so by the Pythagorean Theorem, <math>AE = \dfrac{20\sqrt{13}}{5}</math>. You can now use similar triangles to find that <math>x = \dfrac{8}{5\sqrt{13}}</math> and continue on like in solution 2. | ||
− | ==Solution | + | ==Solution 4== |
<math>DE</math> goes through <math>A</math>, the point of tangency of both circles. So <math>DE</math> intercepts equal arcs in circle <math>P</math> and <math>Q</math>: [[homothety]]. Hence, <math>AE=4AD</math>. We will use such similarity later. | <math>DE</math> goes through <math>A</math>, the point of tangency of both circles. So <math>DE</math> intercepts equal arcs in circle <math>P</math> and <math>Q</math>: [[homothety]]. Hence, <math>AE=4AD</math>. We will use such similarity later. | ||
Revision as of 23:38, 30 December 2019
Contents
[hide]Problem
Circles and have radii and , respectively, and are externally tangent at point . Point is on and point is on so that line is a common external tangent of the two circles. A line through intersects again at and intersects again at . Points and lie on the same side of , and the areas of and are equal. This common area is , where and are relatively prime positive integers. Find .
Hint
is your friend for a quick solve. If you know about homotheties, go ahead, but you'll still need to do quite a bit of computation. If you're completely lost and you have a lot of time left in your mocking of this AIME, go ahead and coordinate bash.
Solution 1
Let be the intersection of and the common internal tangent of and We claim that is the circumcenter of right Indeed, we have and by equal tangents to circles, and since is the midpoint of implying that Now draw where is the center of circle Quadrilateral is cyclic, and by Pythagorean Theorem so by Ptolemy on we have Do the same thing on cyclic quadrilateral (where is the center of circle and get
Let By Law of Sines, Note that from inscribed angles, so
Similarly, and by Law of Sines Note that from inscribed angles, so Setting the two areas equal, we get after Pythagorean Identity. Now plug back in and the common area is
Solution 2
Call and the centers of circles and , respectively, and extend and to meet at point . Call and the feet of the altitudes from to and to , respectively. Using the fact that and setting , we have that . We can do some more length chasing using triangles similar to to get that , , and . Now, consider the circles and on the coordinate plane, where is the origin. If the line through intersects at and at then . To verify this, notice that from the fact that both triangles are isosceles with , which are corresponding angles. Since , we can conclude that .
Hence, we need to find the slope of line such that the perpendicular distance from to is four times the perpendicular distance from to . This will mean that the product of the bases and heights of triangles and will be equal, which in turn means that their areas will be equal. Let the line have the equation , and let be a positive real number so that the negative slope of is preserved. Setting , the coordinates of are , and the coordinates of are . Using the point-to-line distance formula and the condition , we have If , then clearly and would not lie on the same side of . Thus since , we must switch the signs of all terms in this equation when we get rid of the absolute value signs. We then have Thus, the equation of is .
Then we can find the coordinates of by finding the point other than where the circle intersects . can be represented with the equation , and substituting into this equation yields as solutions. Discarding , the -coordinate of is . The distance from to is then The perpendicular distance from to or the height of is Finally, the common area is , and .
Solution 3
By homothety, we deduce that . (The proof can also be executed by similar triangles formed from dropping perpendiculars from the centers of and to .) Therefore, our equality of area condition, or the equality of base times height condition, reduces to the fact that the distance from to is four times that from to . Let the distance from be and the distance from be .
Let and be the centers of their respective circles. Then dropping a perpendicular from to creates a right triangle, from which and, if , that . Then , and the Law of Cosines on triangles and gives and
Now, using the Pythagorean Theorem to express the length of the projection of onto line gives Squaring and simplifying gives and squaring and solving gives
By the Law of Sines on triangle , we have But we know , and so a small computation gives The Pythagorean Theorem now gives and so the common area is The answer is
Alternate Path to x
Call the intersection of lines and .You can use similar triangles to find that the distance from to is four times the distance from to . Then draw a perpendicular from to and call the point . and , so by the Pythagorean Theorem, . You can now use similar triangles to find that and continue on like in solution 2.
Solution 4
goes through , the point of tangency of both circles. So intercepts equal arcs in circle and : homothety. Hence, . We will use such similarity later.
The diagonal distance between the centers of the circles is . The difference in heights is . So .
The triangle connecting the centers with a side parallel to is a right triangle. Since , the height of is . Drop an altitude from to and call it : and . Since right , is a right triangle also; form a geometric progression .
Extend through to a point on the other side of . By homothety, . By angle chasing through right triangle , we deduce that is a right angle. Since is cyclic, is also right. So is a diameter of . Because of this, , the tangent line. is right and .
so and .
Since , the common area is . because the triangles are similar with a ratio of . So we only need to find now.
Extend through to intersect the tangent at . Because , the altitude from to is times the height from to . So and . We look at right triangle . and . is a right triangle. Hypotenuse intersects at a point, we call it . . So .
By Power of a Point, . So . The height from to is .
Thus, . The area of the whole cyclic quadrilateral is . Lastly, the common area is the area of the quadrilateral, or . So .
Solution 5 (Easy computation)
Consider the homothety that takes triangle BDA onto CXY on the big circle, as plotted. Some hidden congruence angles are revealed which help reduce computation complexity. Just some angle chasing and straight forward trigs. Because and , is right angle.
First, , so . And, Then, Since , , , we have Since is four times in scale to , their area ratio is 16. Divide the two equations for the two areas, we have With this angle found, everything else just follows.
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.