Difference between revisions of "2020 AMC 12B Problems/Problem 21"
(→Solution 2) |
(→Solution 2) |
||
Line 65: | Line 65: | ||
Squaring the second inequality, we get <math>k^{2}+30k+225\leq70k+50\implies k^{2}-40k+175\leq 0\implies (k-5)(k-35)\leq0\implies 5\leq k\leq 35</math>. | Squaring the second inequality, we get <math>k^{2}+30k+225\leq70k+50\implies k^{2}-40k+175\leq 0\implies (k-5)(k-35)\leq0\implies 5\leq k\leq 35</math>. | ||
+ | |||
+ | Similarly solving the first inequality gives us <math>k\leq 19-\sqrt{155}</math> or <math>k\geq 19+\sqrt{155}</math> | ||
+ | |||
+ | <math>\sqrt{155}</math> is slightly greater than <math>12</math>, so instead, we can say <math>k\leq 6</math> or <math>k\geq 32</math>. | ||
+ | |||
+ | Combining this with <math>5\leq k\leq 35</math>, we get <math>k=5,6,32,33,34,35</math> are all solutions for <math>k</math> that give a valid solution for <math>n</math>, meaning that our answer is <math>\boxed{6}</math>. | ||
==See Also== | ==See Also== |
Revision as of 23:25, 7 February 2020
Contents
[hide]Problem
How many positive integers satisfy(Recall that is the greatest integer not exceeding .)
Solution
- Not a reliable or in-depth solution (for the guess and check students)
We can first consider the equation without a floor function:
Multiplying both sides by 70 and then squaring:
Moving all terms to the left:
Now we can use wishful thinking to determine the factors:
This means that for and , the equation will hold without the floor function.
Now we can simply check the multiples of 70 around 400 and 2500 in the original equation:
For , left hand side = but so right hand side =
For , left hand side = and right hand side =
For , left hand side = and right hand side =
For , left hand side = but so right hand side =
Now we move to
For , left hand side = and so right hand side =
For , left hand side = and so right hand side =
For , left hand side = and so right hand side =
For , left hand side = but so right hand side =
For , left hand side = and right hand side =
For , left hand side = but so right hand side =
Therefore we have 6 total solutions,
Solution 2
This is my first solution here, so please forgive me for any errors.
We are given that
must be an integer, which means that is divisible by As , this means that , so we can write for an integer .
Therefore,
Also, we can say that and
Squaring the second inequality, we get .
Similarly solving the first inequality gives us or
is slightly greater than , so instead, we can say or .
Combining this with , we get are all solutions for that give a valid solution for , meaning that our answer is .
See Also
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.