Difference between revisions of "2020 AMC 12B Problems/Problem 19"
(→Solution) |
m (→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | Hopefully someone will think of a better one, but here is an indirect | + | Hopefully, someone will think of a better one, but here is an indirect answer, use only if you are really desperate. |
− | <math>20</math> moves can be made, and each move have <math>4</math> choices, so a total of <math>4^{20}=2^{40}</math> moves. First, after the <math>20</math> moves, Point A can only be in first quadrant <math>(1,1)</math> or third quadrant <math>(-1,-1)</math>. Only the one in the first quadrant works, so divide by <math>2</math>. Now, C must be in the opposite quadrant as A. B can be either in the second (<math>(-1, 1)</math>) or fourth quadrant (<math>(1, -1)</math>) , but we want it to be in the second quadrant, so divide by <math>2</math> again. Now as A and B satisfy the conditions, C and D will also be at their original spot. <math>\frac{2^{40}}{2\cdot2}=2^{38}</math>. The answer is \boxed{ | + | <math>20</math> moves can be made, and each move have <math>4</math> choices, so a total of <math>4^{20}=2^{40}</math> moves. First, after the <math>20</math> moves, Point A can only be in first quadrant <math>(1,1)</math> or third quadrant <math>(-1,-1)</math>. Only the one in the first quadrant works, so divide by <math>2</math>. Now, C must be in the opposite quadrant as A. B can be either in the second (<math>(-1, 1)</math>) or fourth quadrant (<math>(1, -1)</math>) , but we want it to be in the second quadrant, so divide by <math>2</math> again. Now as A and B satisfy the conditions, C and D will also be at their original spot. <math>\frac{2^{40}}{2\cdot2}=2^{38}</math>. The answer is <math>\boxed{C}</math> |
+ | ~Kinglogic | ||
{{AMC12 box|year=2020|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2020|ab=B|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:16, 8 February 2020
Square in the coordinate plane has vertices at the points and Consider the following four transformations: a rotation of counterclockwise around the origin; a rotation of clockwise around the origin; a reflection across the -axis; and a reflection across the -axis.
Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying and then would send the vertex at to and would send the vertex at to itself. How many sequences of transformations chosen from will send all of the labeled vertices back to their original positions? (For example, is one sequence of transformations that will send the vertices back to their original positions.)
Solution
Hopefully, someone will think of a better one, but here is an indirect answer, use only if you are really desperate. moves can be made, and each move have choices, so a total of moves. First, after the moves, Point A can only be in first quadrant or third quadrant . Only the one in the first quadrant works, so divide by . Now, C must be in the opposite quadrant as A. B can be either in the second () or fourth quadrant () , but we want it to be in the second quadrant, so divide by again. Now as A and B satisfy the conditions, C and D will also be at their original spot. . The answer is ~Kinglogic
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.