Difference between revisions of "2013 AIME I Problems/Problem 2"
m (→Solution 2) |
(→Solution) |
||
Line 15: | Line 15: | ||
− | == Solution == | + | == Solution 1 == |
The number takes a form of <math>5\text{x,y,z}5</math>, in which <math>5|x+y+z</math>. Let <math>x</math> and <math>y</math> be arbitrary digits. For each pair of <math>x,y</math>, there are exactly two values of <math>z</math> that satisfy the condition of <math>5|x+y+z</math>. Therefore, the answer is <math>10\times10\times2=\boxed{200}</math> | The number takes a form of <math>5\text{x,y,z}5</math>, in which <math>5|x+y+z</math>. Let <math>x</math> and <math>y</math> be arbitrary digits. For each pair of <math>x,y</math>, there are exactly two values of <math>z</math> that satisfy the condition of <math>5|x+y+z</math>. Therefore, the answer is <math>10\times10\times2=\boxed{200}</math> | ||
Revision as of 22:36, 9 February 2020
Contents
[hide]Problem 2
Find the number of five-digit positive integers, , that satisfy the following conditions:
-
(a) the number is divisible by
-
(b) the first and last digits of are equal, and
-
(c) the sum of the digits of is divisible by
Solution 1
The number takes a form of , in which . Let and be arbitrary digits. For each pair of , there are exactly two values of that satisfy the condition of . Therefore, the answer is
Solution 2
For a number to be divisible by , the last digit of the number must be or . However, since the first digit is the same as the last one, the last (and first) digits can not be , so the number must be in the form , where is divisible by 5 Since there is a chance that sum of digits of a randomly selected positive integer is divisible by , This gives us a answer of - mathleticguyyy
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.