Difference between revisions of "2020 AMC 12B Problems/Problem 12"

m
Line 15: Line 15:
  
 
==Solution 3 (Law of Cosines)==
 
==Solution 3 (Law of Cosines)==
Let <math>O</math> be the center of the circle. Notice how <math>OC = OD = r</math>, where <math>r</math> is the radius of the circle. By applying the law of cosines on triangle <math>OCE</math>, <math>r^2=CE^2+OE^2-2(CE)(OE)\cos{45}=CE^2+OE^2-(CE)(OE)\sqrt{2}</math>. Similarly, by applying the law of cosines on triangle <math>ODE</math>, <math>r^2=DE^2+OE^2-2(DE)(OE)\cos{135}=DE^2+OE^2+(DE)(OE)\sqrt{2}</math>. By subtracting these two equations, we get <math>CE^2-DE^2-(CE)(OE)\sqrt{2}-(DE)(OE)\sqrt{2}=0</math>. We can rearrange it to get <math>CE^2-DE^2=(CE)(OE)\sqrt{2}+(DE)(OE)\sqrt{2}=(CE+DE)(OE\sqrt{2})</math>. Because both <math>CE</math> and <math>DE</math> are both positive, we can safely divide both sides by <math>(CE+DE)</math> to obtain <math>CE-DE=OE\sqrt{2}</math>. Because <math>OE = OB - BE = 5\sqrt{2} - 2\sqrt{5}</math>, <math>(CE-DE)^2 = CE^2+DE^2 - 2(CE)(DE) = (OE\sqrt{2})^2 =2(5\sqrt{2} - 2\sqrt{5})^2 = 140 - 40\sqrt{10}</math>. Through power of a point, we can find out that <math>(CE)(DE)=20\sqrt{10} - 20</math>, so <math>CE^2+DE^2 = (CE-DE)^2+ 2(CE)(DE)= (140 - 40\sqrt{10}) + 2(20\sqrt{10} - 20) = 100</math>
+
Let <math>O</math> be the center of the circle. Notice how <math>OC = OD = r</math>, where <math>r</math> is the radius of the circle. By applying the law of cosines on triangle <math>OCE</math>, <math>r^2=CE^2+OE^2-2(CE)(OE)\cos{45}=CE^2+OE^2-(CE)(OE)\sqrt{2}</math>. Similarly, by applying the law of cosines on triangle <math>ODE</math>, <math>r^2=DE^2+OE^2-2(DE)(OE)\cos{135}=DE^2+OE^2+(DE)(OE)\sqrt{2}</math>. By subtracting these two equations, we get <math>CE^2-DE^2-(CE)(OE)\sqrt{2}-(DE)(OE)\sqrt{2}=0</math>. We can rearrange it to get <math>CE^2-DE^2=(CE)(OE)\sqrt{2}+(DE)(OE)\sqrt{2}=(CE+DE)(OE\sqrt{2})</math>. Because both <math>CE</math> and <math>DE</math> are both positive, we can safely divide both sides by <math>(CE+DE)</math> to obtain <math>CE-DE=OE\sqrt{2}</math>. Because <math>OE = OB - BE = 5\sqrt{2} - 2\sqrt{5}</math>, <math>(CE-DE)^2 = CE^2+DE^2 - 2(CE)(DE) = (OE\sqrt{2})^2 =2(5\sqrt{2} - 2\sqrt{5})^2 = 140 - 40\sqrt{10}</math>. Through power of a point, we can find out that <math>(CE)(DE)=20\sqrt{10} - 20</math>, so <math>CE^2+DE^2 = (CE-DE)^2+ 2(CE)(DE)= (140 - 40\sqrt{10}) + 2(20\sqrt{10} - 20) = \boxed{\textbf{(E) } 100}</math>.
  
 
~Math_Wiz_3.14
 
~Math_Wiz_3.14

Revision as of 10:43, 11 February 2020

Problem

Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$

$\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100$

Solution 1

Let $O$ be the center of the circle, and $X$ be the midpoint of $\overline{CD}$. Let $CX=a$ and $EX=b$. This implies that $DE = a - b$. Since $CE = CX + EX = a + b$, we now want to find $(a+b)^2+(a-b)^2=2(a^2+b^2)$. Since $\angle CXO$ is a right angle, by Pythagorean theorem $a^2 + b^2 = CX^2 + OX^2 = (5\sqrt{2})^2=50$. Thus, our answer is $2(50)=\boxed{\textbf{(E) } 100}$.

~JHawk0224

Solution 2 (Power of a Point)

Let $O$ be the center of the circle, and $X$ be the midpoint of $CD$. Draw triangle $OCD$, and median $OX$. Because $OC = OD$, $OCD$ is isosceles, so $OX$ is also an altitude of $OCD$. $OD = 5\sqrt2 - 2\sqrt5$, and because angle $OEC$ is $45$ degrees and triangle $OXE$ is right, $OX = EX = \frac{5\sqrt2 - 2\sqrt5}{\sqrt2} = 5 - \sqrt{10}$. Because triangle $OXC$ is right, $CX = \sqrt{(5\sqrt2)^2 - (5 - \sqrt{10})^2} = \sqrt{15 + 10\sqrt{10}}$. Thus, $CD = 2\sqrt{15 + 10\sqrt{10}}$. We are looking for $CE^2$ + $DE^2$ which is also $(CE + DE)^2 - 2 \cdot CE \cdot DE$. Because $CE + DE = CD = 2\sqrt{15 + 10\sqrt{10}}, (CE + CD)^2 = 4(15 + 10\sqrt{10}) = 60 + 40\sqrt{10}$. By power of a point, $CE \cdot DE = AE \cdot BE = 2\sqrt5\cdot(10\sqrt2 - 2\sqrt5) = 20\sqrt{10} - 20$ so $2 \cdot CE \cdot DE = 40\sqrt{10} - 40$. Finally, $CE^2 + DE^2 = 60 + 40\sqrt{10} - (40\sqrt{10} - 40) = \boxed{(E) 100}$.

~CT17

Solution 3 (Law of Cosines)

Let $O$ be the center of the circle. Notice how $OC = OD = r$, where $r$ is the radius of the circle. By applying the law of cosines on triangle $OCE$, $r^2=CE^2+OE^2-2(CE)(OE)\cos{45}=CE^2+OE^2-(CE)(OE)\sqrt{2}$. Similarly, by applying the law of cosines on triangle $ODE$, $r^2=DE^2+OE^2-2(DE)(OE)\cos{135}=DE^2+OE^2+(DE)(OE)\sqrt{2}$. By subtracting these two equations, we get $CE^2-DE^2-(CE)(OE)\sqrt{2}-(DE)(OE)\sqrt{2}=0$. We can rearrange it to get $CE^2-DE^2=(CE)(OE)\sqrt{2}+(DE)(OE)\sqrt{2}=(CE+DE)(OE\sqrt{2})$. Because both $CE$ and $DE$ are both positive, we can safely divide both sides by $(CE+DE)$ to obtain $CE-DE=OE\sqrt{2}$. Because $OE = OB - BE = 5\sqrt{2} - 2\sqrt{5}$, $(CE-DE)^2 = CE^2+DE^2 - 2(CE)(DE) = (OE\sqrt{2})^2 =2(5\sqrt{2} - 2\sqrt{5})^2 = 140 - 40\sqrt{10}$. Through power of a point, we can find out that $(CE)(DE)=20\sqrt{10} - 20$, so $CE^2+DE^2 = (CE-DE)^2+ 2(CE)(DE)= (140 - 40\sqrt{10}) + 2(20\sqrt{10} - 20) = \boxed{\textbf{(E) } 100}$.

~Math_Wiz_3.14

Video Solution

On The Spot STEM: https://www.youtube.com/watch?v=h-hhRa93lK4

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png