Difference between revisions of "1954 AHSME Problems/Problem 16"
Katzrockso (talk | contribs) (Created page with "== Problem 16== If <math>f(x) = 5x^2 - 2x - 1</math>, then <math>f(x + h) - f(x)</math> equals: <math>\textbf{(A)}\ 5h^2 - 2h \qquad \textbf{(B)}\ 10xh - 4x + 2 \qquad \tex...") |
|||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
− | <math>5(x+h)^2 - 2(x+h) - 1-(5x^2 - 2x - 1)\implies 5(x^2+2xh+h^2)-2x-2h-1-5x^2+2x+1\implies 10xh+5h^2-2h\implies h(10+5h-2) \boxed{(\textbf{D})}</math> | + | <math>5(x+h)^2 - 2(x+h) - 1-(5x^2 - 2x - 1)\implies 5(x^2+2xh+h^2)-2x-2h-1-5x^2+2x+1\implies 10xh+5h^2-2h</math> |
+ | |||
+ | <math>\implies h(10+5h-2) \boxed{(\textbf{D})}</math> | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME 50p box|year=1954|num-b=15|num-a=17}} | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 00:27, 28 February 2020
Problem 16
If , then equals:
Solution
See Also
1954 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.