Difference between revisions of "2006 AIME I Problems/Problem 8"
(there are 5 not 4 rhombuses according to the original problem.) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | [[Hexagon]] <math> ABCDEF </math> is divided into | + | [[Hexagon]] <math> ABCDEF </math> is divided into five [[rhombus]]es, <math> \mathcal{P, Q, R, S,} </math> and <math> \mathcal{T,} </math> as shown. Rhombuses <math> \mathcal{P, Q, R,} </math> and <math> \mathcal{S} </math> are [[congruent (geometry) | congruent]], and each has [[area]] <math> \sqrt{2006}. </math> Let <math> K </math> be the area of rhombus <math> \mathcal{T}</math>. Given that <math> K </math> is a [[positive integer]], find the number of possible values for <math> K</math>. |
Revision as of 19:22, 29 November 2006
Problem
Hexagon is divided into five rhombuses, and as shown. Rhombuses and are congruent, and each has area Let be the area of rhombus . Given that is a positive integer, find the number of possible values for .
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Solution
Let denote the common side length of the rhombi. Let denote one of the smaller interior angles of rhombus . Then . We also see that . Thus can be any positive integer in the interval . and , so can be any integer between 1 and 89, inclusive. Thus the number of positive values for is 089.