Difference between revisions of "2019 AIME I Problems/Problem 2"
m (→Solution 2) |
m |
||
Line 19: | Line 19: | ||
==Video Solution == | ==Video Solution == | ||
https://www.youtube.com/watch?v=lh570eu8E0E | https://www.youtube.com/watch?v=lh570eu8E0E | ||
+ | |||
+ | ==Video Solution 2== | ||
+ | https://youtu.be/TSKcjht8Rfk | ||
+ | |||
+ | ~IceMatrix | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=I|num-b=1|num-a=3}} | {{AIME box|year=2019|n=I|num-b=1|num-a=3}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 02:44, 6 March 2020
Contents
Problem 2
Jenn randomly chooses a number from . Bela then randomly chooses a number from distinct from . The value of is at least with a probability that can be expressed in the form where and are relatively prime positive integers. Find .
Solution
By symmetry, the desired probability is equal to the probability that is at most , which is where is the probability that and differ by (no zero, because the two numbers are distinct). There are total possible combinations of and , and ones that form , so . Therefore the answer is .
Solution 2
This problem is essentially asking how many ways there are to choose distinct elements from a element set such that no elements are adjacent. Using the well-known formula , there are ways. Dividing by , our desired probability is . Thus, our answer is . -Fidgetboss_4000
Solution 3
Create a grid using graph paper, with columns for the values of from to and rows for the values of from to . Since cannot equal , we cross out the diagonal line from the first column of the first row to the twentieth column of the last row. Now, since must be at least , we can mark the line where . Now we sum the number of squares that are on this line and below it. We get . Then we find the number of total squares, which is . Finally, we take the ratio , which simplifies to . Our answer is .
Solution 4
We can see that if chooses , can choose from through such that . If chooses , has choices ~. By continuing this pattern, will choose and will have option. Summing up the total, we get as the total number of solutions. The total amount of choices is (B and J must choose different numbers), so the probability is . Therefore, the answer is
-eric2020
Video Solution
https://www.youtube.com/watch?v=lh570eu8E0E
Video Solution 2
~IceMatrix
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.