Difference between revisions of "2019 AIME I Problems/Problem 5"

m (Solution)
m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
Alternatively, one could recursively compute the probabilities of reaching <math>(0,0)</math> as the first axes point from any point <math>(x,y)</math> as <cmath>P(x,y) = \frac{1}{3} P(x-1,y) + \frac{1}{3} P(x,y-1) + \frac{1}{3} P(x-1,y-1)</cmath> for <math>x,y \geq 1,</math> and the base cases are
+
One could recursively compute the probabilities of reaching <math>(0,0)</math> as the first axes point from any point <math>(x,y)</math> as <cmath>P(x,y) = \frac{1}{3} P(x-1,y) + \frac{1}{3} P(x,y-1) + \frac{1}{3} P(x-1,y-1)</cmath> for <math>x,y \geq 1,</math> and the base cases are
 
<math>P(0,0) = 1, P(x,0) = P(y,0) = 0</math> for any <math>x,y</math> not equal to one.
 
<math>P(0,0) = 1, P(x,0) = P(y,0) = 0</math> for any <math>x,y</math> not equal to one.
 
We then recursively find <math>P(4,4) = \frac{245}{2187}</math> so the answer is <math>245 + 7 = \boxed{252}</math>.
 
We then recursively find <math>P(4,4) = \frac{245}{2187}</math> so the answer is <math>245 + 7 = \boxed{252}</math>.

Revision as of 21:54, 7 March 2020

Problem 5

A moving particle starts at the point $(4,4)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point $(a,b)$, it moves at random to one of the points $(a-1,b)$, $(a,b-1)$, or $(a-1,b-1)$, each with probability $\frac{1}{3}$, independently of its previous moves. The probability that it will hit the coordinate axes at $(0,0)$ is $\frac{m}{3^n}$, where $m$ and $n$ are positive integers. Find $m + n$.

jaskdfjskdjfksdfj

Solution

One could recursively compute the probabilities of reaching $(0,0)$ as the first axes point from any point $(x,y)$ as \[P(x,y) = \frac{1}{3} P(x-1,y) + \frac{1}{3} P(x,y-1) + \frac{1}{3} P(x-1,y-1)\] for $x,y \geq 1,$ and the base cases are $P(0,0) = 1, P(x,0) = P(y,0) = 0$ for any $x,y$ not equal to one. We then recursively find $P(4,4) = \frac{245}{2187}$ so the answer is $245 + 7 = \boxed{252}$.


If this algebra seems intimidating, you can watch a nice pictorial explanation of this by On The Spot Stem. https://www.youtube.com/watch?v=XBRuy3_TM9w

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png