Difference between revisions of "2015 AIME II Problems/Problem 7"
Dankster42 (talk | contribs) (→See also) |
Dankster42 (talk | contribs) (→Solution 7) |
||
Line 120: | Line 120: | ||
Hence, <math>125+36=\boxed{161}</math> | Hence, <math>125+36=\boxed{161}</math> | ||
− | ==Solution | + | ==Solution 6== |
Proceed as in solution 1. When <math>\omega</math> is equal to zero, <math>\alpha - \beta\omega=\alpha</math> is equal to the altitude. This means that <math>25\beta</math> is equal to <math>\frac{36}{5}</math>, so <math>\beta = \frac{36}{125}</math>, yielding <math>\boxed{161}</math>. | Proceed as in solution 1. When <math>\omega</math> is equal to zero, <math>\alpha - \beta\omega=\alpha</math> is equal to the altitude. This means that <math>25\beta</math> is equal to <math>\frac{36}{5}</math>, so <math>\beta = \frac{36}{125}</math>, yielding <math>\boxed{161}</math>. | ||
Revision as of 15:28, 16 March 2020
Contents
[hide]Problem
Triangle has side lengths , , and . Rectangle has vertex on , vertex on , and vertices and on . In terms of the side length , the area of can be expressed as the quadratic polynomial
Area() = .
Then the coefficient , where and are relatively prime positive integers. Find .
Solution 1
If , the area of rectangle is , so
and . If , we can reflect over , over , and over to completely cover rectangle , so the area of is half the area of the triangle. Using Heron's formula, since ,
so
and
so the answer is .
Solution 2
Similar triangles can also solve the problem.
First, solve for the area of the triangle. . This can be done by Heron's Formula or placing an right triangle on and solving. (The side would be collinear with line )
After finding the area, solve for the altitude to . Let be the intersection of the altitude from and side . Then . Solving for using the Pythagorean Formula, we get . We then know that .
Now consider the rectangle . Since is collinear with and parallel to , is parallel to meaning is similar to .
Let be the intersection between and . By the similar triangles, we know that . Since . We can solve for and in terms of . We get that and .
Let's work with . We know that is parallel to so is similar to . We can set up the proportion:
. Solving for , .
We can solve for then since we know that and .
Therefore, .
This means that .
Solution 3
Heron's Formula gives so the altitude from to has length
Now, draw a parallel to from , intersecting at . Then in parallelogram , and so . Clearly, and are similar triangles, and so their altitudes have lengths proportional to their corresponding base sides, and so Solving gives , so the answer is .
Solution 4
Using the diagram from Solution 2 above, label to be . Through Heron's formula, the area of turns out to be , so using as the height and as the base yields . Now, through the use of similarity between and , you find . Thus, . To find the height of the rectangle, subtract from to get , and multiply this by the other given side to get for the area of the rectangle. Finally, .
Solution 5
Using the diagram as shown in Solution 2, let and Now, by Heron's formula, we find that the . Hence,
Now, we see that We easily find that
Hence,
Now, we see that
Now, it is obvious that we want to find in terms of .
Looking at the diagram, we see that because is a rectangle,
Hence.. we can now set up similar triangles.
We have that .
Plugging back in..
Simplifying, we get
Hence,
Solution 6
Proceed as in solution 1. When is equal to zero, is equal to the altitude. This means that is equal to , so , yielding .
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.