|
|
Line 14: |
Line 14: |
| You can just do <math>\frac{289}{20}</math> and round your answer to get <math>\boxed{\textbf{(A)}14}</math>. | | You can just do <math>\frac{289}{20}</math> and round your answer to get <math>\boxed{\textbf{(A)}14}</math>. |
| It is basically Solution 1 without the ratio calculation, which might not be necessary. | | It is basically Solution 1 without the ratio calculation, which might not be necessary. |
− |
| |
− | ==Solution 3==
| |
− | Solved with [b] tworigami, JetC, pretzel, realquarterb, AIME12345, jskalarickal, niyu, ntboiii, kevinmathz, lilypads, ddonk, sadkid, aaa12, byungshinfighters, mrsyallapragada, franchester, ingenio, GameMaster402, anish9876, mira74, SD2014, stroller, AOPS12142015, huangyi_99, sriraamster, TheUltimate123, vedant10, kothasuhas, budu, One-And-A-Half-Genius, Radio2, and mathfun5[/b]
| |
− | -----
| |
− | A beautiful problem.
| |
− |
| |
− | Recall a [b]contraction[/b] from a metric space <math> f: M \rightarrow M</math> is a function such that for some constant <math>k < 1</math> and all <math>x,y \in M</math>, we have <cmath>d(f(x), f(y)) \leq kd(x,y)</cmath>
| |
− |
| |
− | [b][color=#f00]Lemma 1:[/color][/b] Suppose that <math>f: M \rightarrow M</math> is a contraction and that the metric space <math>M</math> is complete. Then <math>f</math> has a unique fixed point <math>p</math>, and for any <math>x \in M</math>, the iterate <math>f^n(x) = f \circ f \circ \dots \circ f(x)</math> converges to <math>p</math> as <math>n \rightarrow \infty</math>.
| |
− |
| |
− | [i]Proof:[/i] Choose any <math>x_0 \in M</math> and define <math>x_n = f^n(x_0)</math>. We claim that for all <math>n \in \mathbb{N}</math> we have <cmath>d(x_n, x_{n+1}) \leq k^nd(x_0, x_1)</cmath> which is immediate by the well ordering principle on <math>\mathbb{N^{+}}</math>. Now, we claim that the sequence <math>(x_n)</math> is Cauchy. For any <math>\varepsilon > 0</math>, choose <math>N</math> so that <cmath>\frac{k^N}{1-k}d(x_0, x_1) < \varepsilon</cmath> If <math>N \leq m \leq n</math>, we have
| |
− | \begin{align*}
| |
− | d(x_m, x_n) &\leq d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{n-1}, x_n)\
| |
− | &\leq k^md(x_0, x_1) + k^{m+1}d(x_0, x+1) + \dots + k^{n-1}d(x_0, x_1)\
| |
− | &= k^m(1+k + \dots + k^{n-m-1})d(x_0, x_1) \
| |
− | &\leq k^N \sum_{l =0}^{\infty} k^ld(x_0, x_1) = \frac{k^N}{1-k}d(x_0, x_1) < \varepsilon
| |
− | \end{align*} It is left as an exercise for the reader to show that this is equivalent to the usual definition of Cauchy, and we conclude <math>(x_n)</math> is Cauchy. As <math>M</math> is complete, the limit of the sequence <math>x_n</math> is some <math>p</math> which is contained in <math>M</math>. For <math>n</math> large, <math>x_n</math> and <math>x_{n+1}</math> lie in the <math>\varepsilon-</math>neighborhood of <math>p</math>, and since <math>\varepsilon</math> was arbitrary, this gives that <math>f(p) = p</math> as desired. Uniqueness is clear. <math>\square</math>
| |
− | -----
| |
− | [b][color=#f00]Lemma 2:[/color][/b] We claim that the function <math>f: \mathbb{R} \rightarrow \mathbb{R}</math> defined by <math>f(x) = \frac{x-289}{20}+14</math> is a contraction.
| |
− | [i]Proof:[/i] Let <math>x, y \in \mathbb{R}</math> and let <math>k = \frac{1}{20}</math>. We have <cmath>d(f(x), f(y)) = d\left(\frac{x-289}{20}, \frac{y-289}{20}\right) = \frac{x-y}{20} \leq \frac{1}{20}d(x,y) =kd(x,y)</cmath> as desired. <math>\square</math>
| |
− | -----
| |
− | We thus find that <math>f</math> has a unique fixed point, in particular when <math>x = \frac{-9}{19}</math>.
| |
− | Because <math>\left(\frac{-9}{19}\right) = \left(\frac{-1}{19}\right)\left(\frac{3}{19}\right)\left(\frac{3}{19}\right) = (-1)(-1)(-1) = 1</math> by Legendre symbol, we find that <math>\left|f\left(\frac{-9}{19}\right)-14\right| = \left|\frac{\frac{-9}{19}-289}{20}-14+14\right| = \left| -\frac{275}{19}\right| = \frac{275}{19}</math>.
| |
− | We need one final lemma about the existence and uniqueness of decimal representations of the reals:
| |
− | -----
| |
− | [b][color=#f00]Lemma 3:[/color][/b] The real numbers correspond bijectively to decimal expansions not terminating in an infinite string of nines.
| |
− |
| |
− | [i]Proof:[/i] We outline the proof as follows: Given <math>x\in\mathbb R</math> (with <math>\mathbb R</math> defined using Dedekind cuts), we define a decimal expansion <math>N.x_1x_2\ldots</math>, where <math>N</math> is the largest integer <math>\le x</math>, <math>x_1</math> is the largest integer <math>\le 10(x-N)</math>, <math>x_2</math> is the largest integer <math>\le 100(x-(N+x_1/10))</math>, and so on.
| |
− |
| |
− | We show
| |
− |
| |
− | [i][color=#00f](i)[/color][/i] Each <math>x_k</math> is a digit between 0 and 9,
| |
− | [i][color=#00f](ii)[/color][/i] For each <math>k</math> there is <math>\ell\ge k</math> so that <math>x_\ell\neq9</math>, and then
| |
− | [i][color=#00f](iii)[/color][/i] Conversely, that for any such expansion <math>N.x_1x_2\ldots</math> not terminating in an infinite string of nines, the set<cmath>\{N, N+\frac{x_1}{10}, N+\frac{x_1}{10}+\frac{x_2}{100},\cdots\}</cmath>
| |
− | is bounded and its least upper bound is a real number <math>x</math> with decimal expansion <math>N.x_1x_2 \dots</math>
| |
− |
| |
− | [i][color=#00f]Proof of (i):[/color][/i] Consider the decimal expansion <math>N.x_1x_2\dots</math>. Because <math>N</math> is the largest number <math>\leq x</math>, <math>0 \leq .x_1x_2\dots <1</math>, so <math>0 \leq 10(x-N) < 10</math>, and <math>0 \leq x_1 \leq 9</math>. Assume <math>x_i \in [0,9]</math> for <math>1\leq i \leq k</math>. Now consider the number <math>x_k.x_{k+1}x_{k+2} \dots</math>. By the above, this implies <math>x_{k+1} \in [0, 9]</math>.
| |
− |
| |
− | [i][color=#00f]Proof of (ii):[/color][/i] We want each real number to have a unique decimal representation. Let <math>S = \{k \in \mathbf{N} : \not\exists l \geq k</math> such that <math>x_l \neq 9 \}</math>. Assume for the sake of contradiction that this set is nonempty. Then take <math>k' \in S</math> as the minimal element of <math>S</math> by WOP. Then,
| |
− | \begin{align*}
| |
− | x &= N.x_1x_2\dots x_{k-1}999\dots \
| |
− | x' &= N.x_1x_2\dots (x_{k-1}+1)000 \dots
| |
− | \end{align*}
| |
− | where <math>x < x'</math>. By continuity we can pick some <math>x''</math> such that <math>x < x'' < x'</math>. But there clearly cannot be a decimal between <math>x</math> and <math>x'</math>, so <math>x=x'</math>. This contradicts the definition of <math>x</math> (ie <math>x_k</math> is <math>\left \lfloor 10^k(x-(N+\frac{x_1}{10}+\dots+\frac{x_{k-1}}{10^{k-1}}))\right \rfloor</math>, so <math>S</math> is empty and <math>\forall k \in \mathbf{N}, \exists l \geq k</math> such that <math>x_l \neq 9</math>.
| |
− |
| |
− | [i][color=#00f]Proof of (iii):[/color][/i] We want to show <math>\forall \epsilon > 0, \exists N</math> such that <math>n \geq N \implies |a_n-x| < \epsilon</math>. This is equivalent to <math>|\frac{x_{n+1}}{10^{n+1}} + \frac{x_{n+2}}{10^{n+2}}+\dots| \leq |\frac{9}{10^{N+1}}+\frac{9}{10^{N+2}}+\dots| \leq \frac{1}{10^N} < \epsilon</math>. We can take <math>N = \left\lceil \frac{\ln{\epsilon}}{\ln{10}} \right\rceil</math> for example, so <math>\lim_{n \rightarrow \infty}{a_n} = x</math>.
| |
− |
| |
− | We conclude that the real numbers correspond bijectively to decimal expansions not terminating in an infinite string of nines. <math>\square</math>
| |
− | -----
| |
− | Using the constructive method given in [b] [color=#f00]Lemma 3[/color][/b], it is straightforward (and left as an exercise) to compute <cmath>\frac{275}{19} = 14.4736842\dots \approx 14 \rightarrow \boxed{\textbf{(A) }14}</cmath> and we are done. <math>\blacksquare</math>[/quote]
| |
| | | |
| | | |