Difference between revisions of "2004 AMC 12B Problems/Problem 16"

(See also)
(Solution)
Line 8: Line 8:
 
\qquad\mathrm{(E)}\ 8</math>
 
\qquad\mathrm{(E)}\ 8</math>
  
== Solution ==
+
== Solution 1==
Let <math>z = a+bi</math>, so <math>\overline{z} = a-bi</math>. By definition, <math>z = a+bi = f(z) = i(a-bi) = b+ai</math>, which implies that all solutions to <math>f(z) = z</math> lie on the line <math>y=x</math> on the complex plane. The graph of <math>|z| = 5</math> is a [[circle]] centered at the origin, and there are <math>2 \Rightarrow \mathrm{(C)}</math> intersections.  
+
Let <math>z = a+bi</math>, so <math>\overline{z} = a-bi</math>. By definition, <math>z = a+bi = f(z) = i(a-bi) = b+ai</math>, which implies that all solutions to <math>f(z) = z</math> lie on the line <math>y=x</math> on the complex plane. The graph of <math>|z| = 5</math> is a [[circle]] centered at the origin, and there are <math>2 \Rightarrow \mathrm{(C)}</math> intersections.
 +
 
 +
===Solution 2===
 +
We start the same as the above solution: Let <math>z = a+bi</math>, so <math>\overline{z} = a-bi</math>. By definition, <math>z = a+bi = f(z) = i(a-bi) = b+ai</math>. Since we are given <math>|z| = 5</math>, this implies that <math>a^2+b^2=25</math>. We recognize the Pythagorean triple <math>3,4,5</math> so we see that <math>(a,b)=(3,4)</math> or <math>(4,3)</math>. So the answer is <math>2 \Rightarrow \mathrm{(C)}</math>.
 +
 
 +
Solution by franzliszt
  
 
== See also ==
 
== See also ==

Revision as of 08:47, 8 July 2020

Problem

A function $f$ is defined by $f(z) = i\overline{z}$, where $i=\sqrt{-1}$ and $\overline{z}$ is the complex conjugate of $z$. How many values of $z$ satisfy both $|z| = 5$ and $f(z) = z$?

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2  \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 8$

Solution 1

Let $z = a+bi$, so $\overline{z} = a-bi$. By definition, $z = a+bi = f(z) = i(a-bi) = b+ai$, which implies that all solutions to $f(z) = z$ lie on the line $y=x$ on the complex plane. The graph of $|z| = 5$ is a circle centered at the origin, and there are $2 \Rightarrow \mathrm{(C)}$ intersections.

Solution 2

We start the same as the above solution: Let $z = a+bi$, so $\overline{z} = a-bi$. By definition, $z = a+bi = f(z) = i(a-bi) = b+ai$. Since we are given $|z| = 5$, this implies that $a^2+b^2=25$. We recognize the Pythagorean triple $3,4,5$ so we see that $(a,b)=(3,4)$ or $(4,3)$. So the answer is $2 \Rightarrow \mathrm{(C)}$.

Solution by franzliszt

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png