Difference between revisions of "2011 AMC 12A Problems/Problem 13"

Line 31: Line 31:
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|num-b=12|num-a=14|ab=A}}
 
{{AMC12 box|year=2011|num-b=12|num-a=14|ab=A}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:54, 17 July 2020

Problem

Triangle $ABC$ has side-lengths $AB = 12, BC = 24,$ and $AC = 18.$ The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N.$ What is the perimeter of $\triangle AMN?$

$\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\  33 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 42$

Solution

Let $O$ be the incenter of $\triangle{ABC}$. Because $\overline{MO} \parallel \overline{BC}$ and $\overline{BO}$ is the angle bisector of $\angle{ABC}$, we have

\[\angle{MBO} = \angle{CBO} = \angle{MOB} = \frac{1}{2}\angle{MBC}\]

It then follows due to alternate interior angles and base angles of isosceles triangles that $MO = MB$. Similarly, $NO = NC$. The perimeter of $\triangle{AMN}$ then becomes \begin{align*} AM + MN + NA &= AM + MO + NO + NA \\ &= AM + MB + NC + NA \\ &= AB + AC \\ &= 30 \rightarrow \boxed{(B)} \end{align*}

Video Solution

https://www.youtube.com/watch?v=u23iWcqbJlE ~Shreyas S

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png