Difference between revisions of "2016 AMC 12B Problems/Problem 24"
Line 5: | Line 5: | ||
=Solution= | =Solution= | ||
− | Let <math>A=\frac{a}{77},\ B=\frac{b}{77}</math>, etc., so that <math>\gcd(A,B,C,D)=1</math>. Then for each prime power <math>p^k</math> in the prime factorization of <math>N=n | + | Let <math>A=\frac{a}{77},\ B=\frac{b}{77}</math>, etc., so that <math>\gcd(A,B,C,D)=1</math>. Then for each prime power <math>p^k</math> in the prime factorization of <math>N=\frac{n}{77}</math>, at least one of the prime factorizations of <math>(A,B,C,D)</math> has <math>p^k</math>, at least one has <math>p^0</math>, and all must have <math>p^m</math> with <math>0\le m\le k</math>. |
Let <math>f(k)</math> be the number of ordered quadruplets of integers <math>(m_1,m_2,m_3,m_4)</math> such that <math>0\le m_i\le k</math> for all <math>i</math>, the largest is <math>k</math>, and the smallest is <math>0</math>. Then for the prime factorization <math>N=2^{k_2}3^{k_3}5^{k_5}\ldots</math> we must have <math>77000=f(k_2)f(k_3)f(k_5)\ldots</math> So let's take a look at the function <math>f(k)</math> by counting the quadruplets we just mentioned. | Let <math>f(k)</math> be the number of ordered quadruplets of integers <math>(m_1,m_2,m_3,m_4)</math> such that <math>0\le m_i\le k</math> for all <math>i</math>, the largest is <math>k</math>, and the smallest is <math>0</math>. Then for the prime factorization <math>N=2^{k_2}3^{k_3}5^{k_5}\ldots</math> we must have <math>77000=f(k_2)f(k_3)f(k_5)\ldots</math> So let's take a look at the function <math>f(k)</math> by counting the quadruplets we just mentioned. |
Revision as of 13:38, 12 August 2020
Problem
There are exactly ordered quadruplets such that and . What is the smallest possible value for ?
Solution
Let , etc., so that . Then for each prime power in the prime factorization of , at least one of the prime factorizations of has , at least one has , and all must have with .
Let be the number of ordered quadruplets of integers such that for all , the largest is , and the smallest is . Then for the prime factorization we must have So let's take a look at the function by counting the quadruplets we just mentioned.
There are quadruplets which consist only of and . Then there are quadruplets which include three different values, and with four. Thus and the first few values from onwards are Straight away we notice that , so the prime factorization of can use the exponents . To make it as small as possible, assign the larger exponents to smaller primes. The result is , so which is answer .
Also, to get the above formula of , we can also use the complementary counting by doing , while the first term is for the four integers to independently have k+1 choices each, with the second term indicating to subtract all the possibilities for the four integers to have values between 0 and k-1, and similarly the third term indicating to subtract all the possibilities for the four integers to have values between 1 and k, in the end the fourth term meaning the make up for the values between 1 and k-1.
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.