Difference between revisions of "2005 AMC 12A Problems/Problem 16"
Franzliszt (talk | contribs) (→Solution) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Three [[circle]]s of [[radius]] <math>s</math> are drawn in the first [[quadrant]] of the <math>xy</math>-[[plane]]. The first circle is tangent to both axes, the second is [[tangent (geometry)|tangent]] to the first circle and the <math>x</math>-axis, and the third is tangent to the first circle and the <math>y</math>-axis. A circle of radius <math>r > s</math> is tangent to both axes and to the second and third circles. What is <math>r | + | Three [[circle]]s of [[radius]] <math>s</math> are drawn in the first [[quadrant]] of the <math>xy</math>-[[plane]]. The first circle is tangent to both axes, the second is [[tangent (geometry)|tangent]] to the first circle and the <math>x</math>-axis, and the third is tangent to the first circle and the <math>y</math>-axis. A circle of radius <math>r > s</math> is tangent to both axes and to the second and third circles. What is <math>\frac{r}{s}</math>? |
<asy> | <asy> |
Revision as of 11:50, 27 August 2020
Contents
[hide]Problem
Three circles of radius are drawn in the first quadrant of the -plane. The first circle is tangent to both axes, the second is tangent to the first circle and the -axis, and the third is tangent to the first circle and the -axis. A circle of radius is tangent to both axes and to the second and third circles. What is ?
Solution
Solution 1
Without loss of generality, let . Draw the segment between the center of the third circle and the large circle; this has length . We then draw the radius of the large circle that is perpendicular to the x-axis, and draw the perpendicular from this radius to the center of the third circle. This gives us a right triangle with legs and hypotenuse . The Pythagorean Theorem yields:
Quite obviously , so and .
Solution 2
Don't do this unless really really desperate. But I actually solved this with a ruler (try and see!!). Let and find in terms of . The rest is easy.
Solution by franzliszt
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.